Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 1979;60(1):25–32. doi: 10.1007/BF01318094

Studies on avian infectious bronchitis virus (IBV)

I. Resistance of IBV to chemical and physical treatments

K Otsuki 1, H Yamamoto 1, M Tsubokura 1
PMCID: PMC7087263  PMID: 39536

Summary

The resistance of avian infectious bronchitis virus (IBV) to several chemical and physical treatments was studied. Ten strains, including four Japanese strains, were used.

1. All strains were sensitive to heating at 56° C for 15 minutes; although two of them, KH and Massachusetts-41, were resistant to heating at 45° C for 90 minutes. 2. All strains were resistant to pH 3.0 and most of the strains were sensitive to pH 11.0. 3. All strains were completely inactivated by chloroform and sodium deoxycholate and all except Beaudette-42 and Connaught were relatively stable to ether. 4. All strains rapidly lost their infectivities upon ultraviolet irradiation. 5. Trypsin did not affect the infectivity of any strain. 6. From these results, the ten strains were classified into three groups based on their stabilities to exposure to heating at 45° C for 90 minutes and to ether.

Keywords: Sodium, Ether, Infectious Disease, Chloroform, Trypsin

Footnotes

With 2 Figures

References

  • 1.Andrews C. H., Horstmann D. M. Susceptibility of viruses to ethyl ether. J. gen. Microbiol. 1949;3:290–297. doi: 10.1099/00221287-3-2-290. [DOI] [PubMed] [Google Scholar]
  • 2.Cooper P. D. A chemical basis for the classification of animal viruses. Nature. 1961;190:302–305. doi: 10.1038/190302a0. [DOI] [PubMed] [Google Scholar]
  • 3.Cowen B. S., Hitchner S. B. pH stability studies with avian infectious bronchitis virus (coronavirus) strains. J. Virol. 1975;15:430–432. doi: 10.1128/jvi.15.2.430-432.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Cowen B. S., Hitchner S. B., Ubertini T. Characterization of a new infectious bronchitis virus isolate II. Some chemical and physical properties of Clark 333. Avian Dis. 1971;15:527–532. [PubMed] [Google Scholar]
  • 5.Cunningham C. H. Avian infectious bronchitis. In: Brandly C. A., Cornelius C. E., editors. Advances in veterinary science and comparative medicine, Vol. 14. New York: Academic Press; 1970. pp. 105–148. [PubMed] [Google Scholar]
  • 6.Cunningham C. H., Spring M. P. Some studies of infectious bronchitis virus in cell culture. Avian Dis. 1965;9:182–193. [PubMed] [Google Scholar]
  • 7.Cunningham C. H., Stuart H. O. The pH stability of the virus of infectious bronchitis of chickens. Cornell Vet. 1947;37:99–103. [PubMed] [Google Scholar]
  • 8.DuBose R. T., Grumbles L. C., Flowers A. I. Differentiation of quail bronchitis virus and infectious bronchitis virus by heat stability. Amer. J. vet. Res. 1960;21:740–743. [PubMed] [Google Scholar]
  • 9.Estola T. Studies on the infectious bronchitis virus of chickens isolated in Finland. Acta vet. Scand. 1966;18(supplement):1–111. [Google Scholar]
  • 10.Feldman H. A., Wang S. S. Sensitivity of various viruses to chloroform. Proc. Soc. exp. Biol. 1961;106:736–738. doi: 10.3181/00379727-106-26459. [DOI] [PubMed] [Google Scholar]
  • 11.Hamre D., Procknow J. J. A new virus isolated from the human respiratory tract. Proc. Soc. exp. Biol. 1966;121:190–193. doi: 10.3181/00379727-121-30734. [DOI] [PubMed] [Google Scholar]
  • 12.Hirai K., Shimakura S. Isolation and characteristics of avian nephrosis-inducing infectious bronchitis virus (coronavirus) Jap. J. vet. Sci. 1971;33:209–216. doi: 10.1292/jvms1939.33.209. [DOI] [PubMed] [Google Scholar]
  • 13.Hofstad M. S. Stability of avian infectious bronchitis virus at 56° C. Cornell Vet. 1956;46:122–128. [PubMed] [Google Scholar]
  • 14.Mohanty S. B., Chang S. C. Development and ether sensitivity of infectious bronchitis virus of chickens in cell cultures. Amer. J. vet. Res. 1963;24:822–826. [Google Scholar]
  • 15.Otsuki K., Takahashi K., Tsubokura M., Itagaki K., Nishio S. Detection of neutralizing antibodies using several serological types of avian infectious bronchitis virus in a poultry farming area. Japan. Poult. Sci. 1976;13:20–25. [Google Scholar]
  • 16.Otsuki K., Tsubokura M., Yamamoto H., Imamura M., Sakagami Y., Saio H., Hosokawa D. Some properties of avian adenoviruses isolated from chickens with inclusion body hepatitis in Japan. Avian Dis. 1976;20:694–705. [PubMed] [Google Scholar]
  • 17.Page C. A., Cunningham C. H. The neutralization test for infectious bronchitis virus. Amer. J. vet. Res. 1962;23:1065–1071. [Google Scholar]
  • 18.Quiroz C. A., Hanson R. P. Physical-chemical treatment of inocula as a means of separating and identifying avian viruses. Avian Dis. 1958;2:94–98. [Google Scholar]
  • 19.Reed L. J., Muench H. A. Simple method of estimating fifty percent endpoints. Amer. J. Hyg. 1938;27:493–497. [Google Scholar]
  • 20.Singh V. P., Malik B. S., Verma K. C. Physical and chemical characteristics of a local strain of infectious bronchitis virus IBV of poultry. Indian J. Poult. Sci. 1974;9:168–171. [Google Scholar]
  • 21.Steele F. M., Luginbuhl R. E. Direct and indirect complement-fixation tests for infectious bronchitis virus. Amer. J. vet. Res. 1964;25:1249–1255. [PubMed] [Google Scholar]
  • 22.von Bülow V. Infektiöse Bronchitis der Hühner IV. Charakterisierung eines neuen Feldstammes des IB-Virus (IBV-10) Zbl. Vet.-Med. 1967;14:151–162. [PubMed] [Google Scholar]
  • 23.Winterfield R. W., Fadly A. M., Hanley J. E. Characteristics of an isolate of infectious bronchitis virus from chickens in Florida. Avian Dis. 1971;15:305–311. [PubMed] [Google Scholar]

Articles from Archives of Virology are provided here courtesy of Nature Publishing Group

RESOURCES