Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 1987;96(3):241–248. doi: 10.1007/BF01320963

Physico-chemical properties of murine hepatitis virus, strain A59

C Daniel 1, P J Talbot 1
PMCID: PMC7087290  PMID: 2821963

Summary

The infectivity of murine hepatitis virus (MHV-A59) was optimally stable at pH 6.0 and was unaffected by ionic strength or at least 15 cycles of freezing and thawing. It was completely inactivated within 25 minutes at 56° C, but was protected by 1m magnesium chloride or magnesium sulphate. It was completely inactivated within 14 days at 37 and 22°C, but was relatively stable for as long as 72 days at 4°C and optimal pH.

Keywords: Sulphate, Chloride, Magnesium, Hepatitis, Infectious Disease

References

  • 1.Alexander DJ, Collins MS. Effect of pH on the growth and cytopathogenicity of avian infectious bronchitis virus in chick kidney cells. Arch Virol. 1975;49:339–348. doi: 10.1007/BF01318243. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Bhatt PN, Percy DH, Jonas AM. Characterization of the virus of sialodacryoadenitis of rats. J Infect Dis. 1972;126:123–130. doi: 10.1093/infdis/126.2.123. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Cartwright FS, Harris HM, Blandfors TB. A cytopathic virus causing a transmissible gastroenteritis in swine. J Comp Pathol. 1965;75:387–396. doi: 10.1016/0021-9975(65)90019-8. [DOI] [PubMed] [Google Scholar]
  • 4.Cheever FS, Daniels JB, Pappenheimer AM, Bailey OT. A murine virus (JHM) causing disseminated encephalomyelitis with extensive destruction of myelin. I. Isolation and biologic properties of the virus. J Exp Med. 1949;90:181–194. doi: 10.1084/jem.90.3.181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Coria MF. Stabilizing effect of magnesium sulfate on avian infectious bronchitis virus propagated in chicken embryo kidney cells. Appl Microbiol. 1972;23:281–284. doi: 10.1128/am.23.2.281-284.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Cowen BS, Hitchner SB. pH stability studies with avian infectious bronchitis virus (coronavirus) strains. J Virol. 1975;15:430–432. doi: 10.1128/jvi.15.2.430-432.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Cowen BS, Hitchner SB, Ubertini T. Characterization of a new infectious bronchitis virus isolate. II. Some chemical and physical properties of Clark 333. Avian Dis. 1971;15:527–532. [PubMed] [Google Scholar]
  • 8.Cunningham CH, Stuart HO. The pH stability of the virus of infectious bronchitis of chickens. Cornell Vet. 1947;37:99–103. [PubMed] [Google Scholar]
  • 9.Fasman GD. Buffer solutions. In: Fasman GD, editor. Handbook of biochemistry and molecular biology. 3rd edn. Cleveland, Ohio: CRC Press; 1976. p. 362. [Google Scholar]
  • 10.Hamparian VV, Hileman MR, Ketler A. Contributions to characterization and classification of animal viruses. Proc Soc Exp Biol Med. 1963;112:1040–1050. doi: 10.3181/00379727-112-28247. [DOI] [PubMed] [Google Scholar]
  • 11.Harada K, Kaji T, Kumagai T, Sasahara J. Studies on transmissible gastroenteritis in pigs. IV. Physicochemical and biological properties of TGE virus. Natl Inst Anim Health Q. 1968;8:140–147. [PubMed] [Google Scholar]
  • 12.Hess RG, Bachmann PA. In vitro differentiation and pH sensitivity of field and cell culture-attenuated strains of transmissible gastroenteritis virus. Infect Immun. 1976;13:1642–1646. doi: 10.1128/iai.13.6.1642-1646.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Hirano N, Fujiwara K, Hino S, Matumoto M. Replication and plaque formation of mouse hepatitis virus (MHV-2) in mouse cell line DBT culture. Arch Ges Virusforsch. 1974;44:298–302. doi: 10.1007/BF01240618. [DOI] [PubMed] [Google Scholar]
  • 14.Hirano N, Hino S, Fujiwara K. Physico-chemical properties of mouse hepatitis virus (MHV-2) grown on DBT cell culture. Microbiol Immunol. 1978;22:377–390. doi: 10.1111/j.1348-0421.1978.tb00384.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Laude H. Thermal inactivation studies of coronavirus, transmissible gastroenteritis virus. J Gen Virol. 1981;56:235–240. doi: 10.1099/0022-1317-56-2-235. [DOI] [PubMed] [Google Scholar]
  • 16.Manaker RA, Piczac CV, Miller AA, Stanton MF. A hepatitis virus complicating studies with mouse leukemia. J Natl Cancer Inst. 1961;27:27–51. [PubMed] [Google Scholar]
  • 17.Maru M, Sato K. Characterization of a coronavirus isolated from rats with sialoadenitis. Arch Virol. 1982;73:33–43. doi: 10.1007/BF01341725. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.McClurkin AW, Norman JO. Studies on transmissible gastroenteritis of swine. II. Selected characteristics of a cytopathogenic virus common to five isolates from transmissible gastroenteritis. Can J Comp Med. 1966;30:190–198. [PMC free article] [PubMed] [Google Scholar]
  • 19.McIntosh K. Coronaviruses: a comparative review. Curr Top Microbiol Immunol. 1974;63:85–129. [Google Scholar]
  • 20.Piazza M. Experimental viral hepatitis. Springfield, Illinois: CC Thomas; 1969. pp. 17–116. [Google Scholar]
  • 21.Pocock DH, Garwes DJ. The influence of pH on the growth and stability of transmissible gastroenteritis virus in vitro. Arch Virol. 1975;49:239–247. doi: 10.1007/BF01317542. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Rapp F, Butel JS, Wallis C. Protection of measles virus by sulfate ions against thermal inactivation. J Bacteriol. 1965;90:132–135. doi: 10.1128/jb.90.1.132-135.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Siddell S, Wege H, ter Meulen V. The structure and replication of coronaviruses. Curr Top Microbiol Immunol. 1982;99:131–163. doi: 10.1007/978-3-642-68528-6_4. [DOI] [PubMed] [Google Scholar]
  • 24.Siddell S, Wege H, ter Meulen V. The biology of coronaviruses. J Gen Virol. 1983;64:761–776. doi: 10.1099/0022-1317-64-4-761. [DOI] [PubMed] [Google Scholar]
  • 25.Siddell SG, Anderson R, Cavanagh D, Fujiwara K, Klenk HD, MacNaughton MR, Pensaert M, Stohlman SA, Sturman L, van der Zeijst BAM. Coronaviridae. Intervirology. 1983;20:181–189. doi: 10.1159/000149390. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Stinski MF, Cunningham CH. Neutralizing antibody complex of infectious bronchitis virus. J Immunol. 1969;102:720–727. [PubMed] [Google Scholar]
  • 27.Sturman LS. The structure and behavior of coronavirus A 59 glycoproteins. In: ter Meulen V, Siddell S, Wege H, editors. Biochemistry and biology of coronaviruses. New York: Plenum Press; 1981. pp. 1–17. [Google Scholar]
  • 28.Sturman LS, Holmes KV. The molecular biology of coronaviruses. Adv Virus Res. 1983;28:35–112. doi: 10.1016/S0065-3527(08)60721-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Tyrrell DAJ, Alexander DJ, Almeida JD, Cunningham CH, Easterday BC, Garwes DJ, Hierholzer JC, Kapikian A, MacNaughton MR, McIntosh K. Coronaviridae: second report. Intervirology. 1978;10:321–328. doi: 10.1159/000148996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Wallis C, Melnick JL. Stabilization of polioviruses by cations. Tex Rept Biol Med. 1961;19:683–700. [PubMed] [Google Scholar]
  • 31.Wallis C, Melnick JL. Cationic stabilization — a new property of enteroviruses. Virology. 1962;16:504–506. doi: 10.1016/0042-6822(62)90234-9. [DOI] [PubMed] [Google Scholar]
  • 32.Wallis C, Yang C, Melnick JL. Effect of cations on thermal inactivation of vaccinia, herpes simplex and adenoviruses. J Immunol. 1962;89:41–46. [PubMed] [Google Scholar]
  • 33.Wallis C, Melnick JL, Rapp F. Different effects of MgCl2 and MgSO4 on the thermostability of viruses. Virology. 1965;26:694–699. doi: 10.1016/0042-6822(65)90332-6. [DOI] [PubMed] [Google Scholar]
  • 34.Wege H, Siddell S, ter Meulen V. The biology and pathogenesis of coronaviruses. Curr Top Microbiol Immunol. 1982;99:165–200. doi: 10.1007/978-3-642-68528-6_5. [DOI] [PubMed] [Google Scholar]

Articles from Archives of Virology are provided here courtesy of Nature Publishing Group

RESOURCES