Summary.
This paper describes mapping of antigenic and host-protective epitopes of infectious bronchitis virus proteins by assessing the ability of defined peptide regions within the S1, S2 and N proteins to elicit humoral, cell-mediated and protective immune responses. Peptides corresponding to six regions in the S1 (Sp1–Sp6), one in the S2 (Sp7) and four in the N protein (Np1–Np4) were synthesized and coupled to either diphtheria toxoid (dt) or biotin (bt). Bt-peptides were used to assess if selected regions were antigenic and contained B- or T-cell epitopes and dt-peptides if regions induced an antibody response and protection against virulent challenge. All S1 and S2 peptides were antigenic, being recognised by IBV immune sera and also induced an antibody response following inoculation into chicks. Three S1-and one S2-bt peptides also induced a delayed type hypersensitivity response indicating the presence of T-cell epitopes. The S2 peptide Sp7 (amino acid position 566–584) previously identified as an immundominant region, was the most antigenic of all peptides used in this study. Two S1 (Sp4 and Sp6) and one S2 peptide (Sp7), protected kidney tissue against virulent challenge. From four N peptides located in the amino-terminal part of the N protein, only one, Np2 (amino acid position 72–86), was antigenic and also induced a delayed type hypersensitivity response. None of the N peptides induced protection against virulent challenge. The results suggest that the S1 glycoprotein carries additional antigenic regions to those previously identified and that two regions located in the S1 and one in the S2 at amino acid positions 294–316 (Sp4), 532–537 (Sp6) and 566–584 (Sp7) may have a role in protection.
Keywords: Peptide, Antibody Response, Kidney Tissue, Diphtheria, Amino Acid Position
References
- Boots AMH, Kusters JG, van Noort JM, Zwaagstra KA, Rijke E, van der Zeijst BA, Hensen EJ. Localization of a T-cell epitope within the nucleocapsid protein of avian coronavirus. Immunology. 1991;74:8–13. [PMC free article] [PubMed] [Google Scholar]
- Boots AMH, Benaissa-Trouw BJ, Hesselink W, Rijke E, Schrier C, Hensen EJ. Induction of anti-viral immune responses by immunization with recombinant-DNA encoded avian coronavirus nucleocapsid protein. Vaccine. 1992;10:119–124. doi: 10.1016/0264-410X(92)90028-I. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Boursnell MEG, Brown TDK, Foulds IJ, Green PF, Tomley FM, Binns MM. Completion of the sequence of the genome of the coronavirus avian infectious bronchitis virus. J Gen Virol. 1987;68:57–77. doi: 10.1099/0022-1317-68-1-57. [DOI] [PubMed] [Google Scholar]
- Cavanagh D (1995) The coronavirus surface glycoprotein. In: Siddell SG (ed), The Coronaviridae. Plenum Press, New York, pp 73–113
- Cavanagh D, Naqi S (2003) Infectious bronchitis. In: Saif YM, Barnes HJ, Glisson JR, Fadly AM, McDougald LR, Swayne DE (eds) Diseases of poultry. Iowa State Press, Ames, 101–119
- Cavanagh D, Davis PJ, Darbyshire JH, Peters RW. Coronavirus IBV: virus retaining spike glycopolypeptide S2 but not S1 is unable to induce virus-neutralizing or haemagglutination-inhibiting antibody, or induce chicken tracheal protection. J Gen Virol. 1986;67:1435–1442. doi: 10.1099/0022-1317-67-7-1435. [DOI] [PubMed] [Google Scholar]
- Cavanagh D, Davis PJ, Mockett APA. Amino acids within hypervariable region 1 of avian coronavirus IBV (Massachusetts serotype) spike glycoprotein are associated with neutralization epitopes. Virus Res. 1988;11:141–150. doi: 10.1016/0168-1702(88)90039-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cavanagh D, Davis PJ, Cook JKA, Li D, Kant A, Koch G. Location of the amino acid differences in the S1 spike glycoprotein subunit of closely related serotypes of infectious bronchitis virus. Avian Pathol. 1992;21:33–43. doi: 10.1080/03079459208418816. [DOI] [PubMed] [Google Scholar]
- Chou PY, Fasman GD. Prediction of protein conformation. Biochemistry. 1974;13:222–245. doi: 10.1021/bi00699a002. [DOI] [PubMed] [Google Scholar]
- Daniel C, Anderson R, Buchmeier MJ, Fleming JO, Spaan WJM, Wege H, Talbot PJ. Identification of an immunodominant linear neutralization domain on the S2 portion of the murine coronavirus spike glycoprotein and evidence that it forms part of a complex tridimensional structure. J Virol. 1993;67:1185–1194. doi: 10.1128/jvi.67.3.1185-1194.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- De Geoot RJ, Luytjes W, Horzinek MC, van der Zeijst BAM, Spaan WJM, Lenstra JA. Evidence for a coiled-coil structure in the spike proteins of coronaviruses. J Mol Biol. 1987;196:963–966. doi: 10.1016/0022-2836(87)90422-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hoop TP, Woods KR. Prediction of protein antigenic determinants from amino acid sequences. Proc Natl Acad Sci USA. 1981;78:3824–3828. doi: 10.1073/pnas.78.6.3824. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ignjatovic J, McWaters PG. Monoclonal antibodies to three structural proteins of avian infectious bronchitis virus: characterization of epitopes and antigenic differentiation of Australian strains. J Gen Virol. 1991;72:2915–2922. doi: 10.1099/0022-1317-72-12-2915. [DOI] [PubMed] [Google Scholar]
- Ignjatovic J, Galli L. The S1 glycoprotein but not N or M proteins of avian infectious bronchitis virus induces protection in vaccinated chickens. Arch Virol. 1994;138:117–134. doi: 10.1007/BF01310043. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ignjatovic J, Galli L. Immune responses to structural proteins of avian infectious bronchitis virus. Avian Pathol. 1995;24:313–332. doi: 10.1080/03079459508419072. [DOI] [PubMed] [Google Scholar]
- Johnson MA, Pooley C, Ignjatovic J, Tyack SG. A recombinant fowl adenovirus expressing the S1 gene of infectious bronchitis virus protects against challenge with infectious bronchitis virus. Vaccine. 2003;21:2730–2736. doi: 10.1016/s0264-410x(03)00227-5. [DOI] [PubMed] [Google Scholar]
- Kant A, Koch G, van Roozelaar DJ, Kusters JG, Poelwijk FAJ, van der Zeijst BAM. Location of antigenic sites defined by neutralising monoclonal antibodies on the S1 avian infectious bronchitis virus glycopolypeptide. J Gen Virol. 1992;73:591–596. doi: 10.1099/0022-1317-73-3-591. [DOI] [PubMed] [Google Scholar]
- Koch G, Hartog L, Kant A, van Roozelaar D. Antigenic domains on the peplomer protein of avian infectious bronchitis virus: correlation with biological functions. J Gen Virol. 1990;71:1929–1935. doi: 10.1099/0022-1317-71-9-1929. [DOI] [PubMed] [Google Scholar]
- Koch G, Kant A, Cook JKA, Cavanagh D (1991) Epitopes of neutralising antibodies are localised within three regions of the S1 spike protein of infectious bronchitis virus. In: Proc Second International Symposium on Infectious Bronchitis, World Veterinary Poultry Association, Rauischholzhausen, pp 154–160
- Kusters JG, Niesters HGM, Bleumink-Pluym NMC, Davelaar FG, Horzinek MC, van der Zeijst BAM. Molecular epidemiology of infectious bronchitis virus in the Netherlands. J Gen Virol. 1987;68:343–352. doi: 10.1099/0022-1317-68-2-343. [DOI] [PubMed] [Google Scholar]
- Kusters JG, Jager EJ, Lenstra JA, Koch G, Posthumus WPA, Meloen RH, van der Zeijst BAM. Analysis of an immunodominant region of infectious bronchitis virus. J Immunol. 1989;143:2692–2698. [PubMed] [Google Scholar]
- Kusters JG, Jager EJ, Niesters HGM, van der Zeijst BAM. Sequence evidence for RNA recombination in field isolates of avian coronavirus infectious bronchitis virus. Vaccine. 1990;8:605–608. doi: 10.1016/0264-410X(90)90018-H. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kyte J, Doolittle RF. A simple method for displaying the hydropathic character of a protein. J Mol Biol. 1982;157:105–132. doi: 10.1016/0022-2836(82)90515-0. [DOI] [PubMed] [Google Scholar]
- Lenstra JA, Kusters JG, Koch G, van der Zeijst BAM. Antigenicity of the peplomer protein of infectious bronchitis virus. Mol Immunol. 1989;26:7–15. doi: 10.1016/0161-5890(89)90014-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moore KM, Jackwood MW, Hilt DA. Identification of amino acids involved in a serotype and neutralisation specific epitope within the S1 subunit of avian infectious bronchitis virus. Arch Virol. 1997;142:2249–2256. doi: 10.1007/s007050050239. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Niesters HGM, Bleumink-Pluym NMC, Osterhaus ADME, Horzinek MC, van der Zeijst BAM. Epitopes on the peplomer protein of infectious bronchitis virus strain M41 as defined by monoclonal antibodies. Virology. 1987;161:511–519. doi: 10.1016/0042-6822(87)90145-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Partidos CD, Delmas A, Steward MW. Structural requirements for synthetic immunogens to induce measles virus specific CTL response. Mol Immunol. 1996;33:1223–1229. doi: 10.1016/S0161-5890(96)00094-6. [DOI] [PubMed] [Google Scholar]
- Sapats SI, Ashton F, Wright PJ, Ignjatovic J. Sequence analysis of the S1 glycoprotein of infectious bronchitis viruses: identification of a novel genotypic group in Australia. J Gen Virol. 1996;77:413–418. doi: 10.1099/0022-1317-77-3-413. [DOI] [PubMed] [Google Scholar]
- Sapats SI, Ashton F, Wright PJ, Ignjatovic J. Novel variation in the N protein of avian infectious bronchitis virus. Virology. 1996;226:412–417. doi: 10.1006/viro.1996.0670. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Seah JN, Yu L, Kwang J. Localisation of linear B-cell epitopes on infectious bronchitis virus nucleocapsid protein. Vet Microbiol. 2000;75:11–16. doi: 10.1016/S0378-1135(00)00202-9. [DOI] [PubMed] [Google Scholar]
- Seo SH, Wang L, Smith R, Collisson EW. The carboxyl-terminal 120-residue polypetide of infectious bronchitis virus nucleocapsid induces cytotoxic T lymphocytes and protects chickens from acute infection. J Virol. 1997;71:7888–7894. doi: 10.1128/jvi.71.10.7889-7894.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sette A, Fikes J. Epitope-based vaccines: an update on epitope identification, vaccine design and delivery. Curr Opin Immunol. 2003;15:461–470. doi: 10.1016/S0952-7915(03)00083-9. [DOI] [PubMed] [Google Scholar]
- Song CS, Lee YJ, Lee CW, Sung HW, Kim JH, Mo IP, Izumiya Y, Jang HK, Mikami T. Induction of protective immunity in chickens vaccinated with infectious bronchitis virus S1 glycoprotein expressed by a recombinant baculovirus. J Gen Virol. 1998;79:719–723. doi: 10.1099/0022-1317-79-4-719. [DOI] [PubMed] [Google Scholar]
- Tomley FM, Mockett AP, Boursnell ME, Binns MM, Cook JK, Brown TD, Smith GL. Expression of the infectious bronchitis virus spike protein by recombinant vaccinia virus and induction of neutralizing antibodies in vaccinated mice. J Gen Virol. 1987;68:2291–2298. doi: 10.1099/0022-1317-68-9-2291. [DOI] [PubMed] [Google Scholar]
- Talbot PJ, Dionne G, Lacroix M. Vaccination against lethal coronavirus-induced encephalitis with a synthetic decapeptide homologous to a domain in the predicted peplomer stalk. J Virol. 1988;62:3032–3036. doi: 10.1128/jvi.62.8.3032-3036.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Van Regenmortel MHV, Muller S (1999) Synthetic peptides as antigens. In: van der Vliet PC (ed), Laboratory techniques in biochemistry and molecular biology. vol 28. Elsevier Science BV, Amsterdam
- Wang L, Parr RL, King DJ, Collisson EW. A highly conserved epitope on the spike protein of infectious bronchitis virus. Arch Virol. 1995;140:2201–2213. doi: 10.1007/BF01323240. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wang X, Schnitzlein WM, Tripathy DN, Girshick T, Khan MI. Construction and immunogenicity studies of recombinant fowl poxvirus containing the S1 gene of Massachusetts 41 strain of infectious bronchitis virus. Avian Dis. 2002;46:831–838. doi: 10.1637/0005-2086(2002)046[0831:CAISOR]2.0.CO;2. [DOI] [PubMed] [Google Scholar]
- Wiesmuller KH, Fleckenstein B, Jung G. Peptide vaccines and peptide libraries. Biol Chem. 2001;382:571–579. doi: 10.1515/BC.2001.070. [DOI] [PubMed] [Google Scholar]