Summary
We use a sensitive biotin polarity assay to survey the surface distribution of glycosyl-phosphatidylinositol (GPI) anchored proteins in five model epithelial cell lines derived from different species (dog, pig, man) and tissues, i.e., kidney (MDCK I, MDCK II, LLC-PK1) and intestine (Caco-2 and SK-CO15). After biotinylation of apical or basolateral surfaces of confluent monolayers grown on polycarbonate filters, GPI-anchored proteins are identified by their shift from a Triton X-114 detergent-rich phase to a detergent-poor phase in the presence of phosphatidylinositol-specific phospholipase C. All GPI-anchored proteins detected (3–9 per cell type, at least 13 different proteins) are found to be apically polarized; no GPI-anchored protein is observed preferentially localized to the basal surface. One of the GPI-anchored proteins is identified as carcinoembryonic antigen (CEA). Survey of MDCK II-RCAr, a mutant cell line with a pleiotropic defect in galactosylation of glycoproteins and glycolipids (that presumably affects GPI anchors) also reveals an apical polarization of all GPI-anchored proteins. In contrast, analysis of MDCK II-ConA′ (a mutant cell line with an unknown defect in glycosylation) revealed five GPI-anchored proteins, two of which appeared relatively unpolarized. Our results indicate that the polarized apical distribution of GPI-anchored proteins is highly conserved across species and tissue-type and may depend on glycosylation.
Key Words: protein targeting, biotin labeling, epithelial polarity, glycolipids, glycosyl-phosphatidylinositol
References
- Bangs J.D., Hereld D., Krakow J.L., Hart G.W., Englund P.T. Rapid processing of the carboxyl terminus of a trypanosome variant surface glycoprotein. Proc. Natl. Acad. Sci. USA. 1985;82:3207–3211. doi: 10.1073/pnas.82.10.3207. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bensadoun A., Weinstein D. Assay of proteins in the presence of interfering materials. Anal. Biochem. 1976;70:241–251. doi: 10.1016/s0003-2697(76)80064-4. [DOI] [PubMed] [Google Scholar]
- Birk H., Koepsell H. Reaction of monoclonal antibodies with plasma membrane proteins after binding on nitrocellulose: Renaturation of antigenic sites and reduction of nonspecific antibody binding. Anal. Biochem. 1987;164:12–22. doi: 10.1016/0003-2697(87)90360-5. [DOI] [PubMed] [Google Scholar]
- Blobel G. Intracellular protein topogenesis. Proc. Natl. Acad. Sci. USA. 1980;77:1496–1500. doi: 10.1073/pnas.77.3.1496. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bordier C. Phase separation of integral membrane proteins in Triton X-114 solution. J. Biol. Chem. 1981;256:1604–1607. [PubMed] [Google Scholar]
- Brandli A.W., Hansson G.C., Rodriguez-Boulan E., Simons K. A polarized epithelial cell mutant deficient in translocation of UDP-galactose into the Golgi complex. J. Biol. Chem. 1988;263:16283–16290. [PubMed] [Google Scholar]
- Brown D.A., Crise B., Rose J.K. Mechanism of membrane anchoring affects polarized expression of two proteins in MDCK cells. Science. 1989;245:1499–1501. doi: 10.1126/science.2571189. [DOI] [PubMed] [Google Scholar]
- Brown D.A., Rose J.K. Polarized expression of hybrid proteins in MDCK cells. J. Cell Biol. 1988;107:782a. [Google Scholar]
- Caplan M.J., Anderson H.C., Palade G.E., Jamieson J.D. Intracellular sorting and polarized cell surface delivery of (Na+, K+) ATPase, an endogenous component of MDCK cell basolateral plasma membranes. Cell. 1986;46:623–631. doi: 10.1016/0092-8674(86)90888-3. [DOI] [PubMed] [Google Scholar]
- Chan B.L., Lisanti M.P., Rodriguez-Boulan E., Saltiel A.R. Insulin-stimulated release of lipoprotein lipase by metabolism of its phosphatidylinositol anchor. Science. 1988;241:1670–1672. doi: 10.1126/science.241.4873.1670. [DOI] [PubMed] [Google Scholar]
- Chapman A., Fujimoto K., Kornfeld S. The primary glycosylation defect in class E Thy-1 negative mutant mouse lymphoma cell lines is an ability to synthesize dolichol-p-mannose. J. Biol. Chem. 1980;255:4441–4446. [PubMed] [Google Scholar]
- Conzelmann A., Spiazzi A., Bron C. Glycolipid anchors are attached to Thy-1 glycoprotein rapidly after translation. Biochem. J. 1987;246:605–610. doi: 10.1042/bj2460605. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Conzelmann A., Spiazzi A., Hyman R., Bron C. Anchoring of membrane proteins via phosphatidylinositol is deficient in two classes of Thy-1 negative mutant lymphoma cells. EMBO J. 1986;5:3291–3296. doi: 10.1002/j.1460-2075.1986.tb04642.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cross G.A.M. Eukaryotic protein modification and membrane attachment via phosphatidylinositol. Cell. 1987;48:179–181. doi: 10.1016/0092-8674(87)90419-3. [DOI] [PubMed] [Google Scholar]
- Davitz M.A., Hereld D., Shak S., Krakow J., Englund P.T., Nussenzweig V. A glycan-phosphatidylinositol-specific phospholipase D in human serum. Science. 1987;238:81–84. doi: 10.1126/science.2443973. [DOI] [PubMed] [Google Scholar]
- Davitz M.A., Low M.G., Nussenzweig V. Release of decay-accelerating factor (DAF) from the cell membrane by phosphatidylinositol-specific phospholipase C (PI-PLC) J. Exp. Med. 1986;163:1150–1161. doi: 10.1084/jem.163.5.1150. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ferguson M.A.J., Duszenko M., Lamont G.S., Overath P., Cross G.A.M. Biosynthesis ofTrypanosoma brucei variant surface glycoproteins. J. Biol. Chem. 1986;261:356–362. [PubMed] [Google Scholar]
- Ferguson M.A.J., Homans S.W., Dwek R.A., Rademacher T.W. Glycosyl-phosphatidylinositol moiety that anchorsTrypanosoma brucei variant surface glycoprotein to the membrane. Science. 1988;239:753–759. doi: 10.1126/science.3340856. [DOI] [PubMed] [Google Scholar]
- Ferguson M.A.J., Williams A.F. Cell-surface anchoring of proteins via glycosyl-phosphatidylinositol structures. Annu. Rev. Biochem. 1988;57:285–320. doi: 10.1146/annurev.bi.57.070188.001441. [DOI] [PubMed] [Google Scholar]
- Fogh J., Trempe G. New human tumor cell lines. In: Fogh J., editor. Human Tumor Cells in vitro. New York: Plenum; 1975. pp. 115–140. [Google Scholar]
- Grab D.J., Webster P., Verjee Y. The intracellular pathway and assembly of newly formed variable surface glycoprotein ofTrypanosoma brucei. Proc. Natl. Acad. Sci. USA. 1984;81:7703–7707. doi: 10.1073/pnas.81.24.7703. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grasset E., Pinto M., Dussaulx E., Zweibaum A., Desjeux J.F. Epithelial properties of human colonic carcinoma cell line Caco-2: Electrical parameters. Am. J. Physiol. 1984;247:C260–C267. doi: 10.1152/ajpcell.1984.247.3.C260. [DOI] [PubMed] [Google Scholar]
- Gstraunthaler G.J.A. Epithelial cells in tissue culture. Renal Physiol. Biochem. 1988;11:1–42. doi: 10.1159/000173147. [DOI] [PubMed] [Google Scholar]
- Hamada Y., Yamamura M., Kohshiro H., Yamamoto M., Nagura H., Watanbe K. Immunohistochemical study of carcinoembryonic antigen in patients with colorectal cancer. Cancer. 1985;55:136–141. doi: 10.1002/1097-0142(19850101)55:1<136::aid-cncr2820550121>3.0.co;2-p. [DOI] [PubMed] [Google Scholar]
- Handler J.S., Perkins F.M., Johnson J.P. Studies of renal function using cell culture techniques. Am. J. Physiol. 1980;238:F1–F9. doi: 10.1152/ajprenal.1980.238.1.F1. [DOI] [PubMed] [Google Scholar]
- Hauri H.P., Sterchi E.E., Bienz D., Fransen J.A.M., Marxen A. Expression and intracellular transport of microvillus membrane hydrolases in human intestinal epithelial cells. J. Cell Biol. 1985;101:838–851. doi: 10.1083/jcb.101.3.838. [DOI] [PMC free article] [PubMed] [Google Scholar]
- He H., Finne J., Goridis C. Biosynthesis, membrane association, and release of N-CAM-120, a phosphatidylinositol-linked form of the neural cell adhesion molecule. J. Cell. Biol. 1987;105:2489–2500. doi: 10.1083/jcb.105.6.2489. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Homans S.W., Ferguson M.A.J., Dwek R.A., Rademacher T.W., Anand R., Williams A.F. Complete structure of the glycosyl phosphatidylinositol membrane anchor of rat brain Thy-1 glycoprotein. Nature (London) 1988;333:269–272. doi: 10.1038/333269a0. [DOI] [PubMed] [Google Scholar]
- Hull R.N., Cherry W.R., Weaver G.W. The origin and characteristics of a pig kidney cell strain, LLC-PK. In Vitro. 1976;12:670–677. doi: 10.1007/BF02797469. [DOI] [PubMed] [Google Scholar]
- Kollias G., Evans D.J., Ritter M., Beech J., Morris R., Grosveld F. Ectopic expression of Thy-1 in the kidneys of transgenic mice induces functional and proliferative abnormalities. Cell. 1987;51:21–31. doi: 10.1016/0092-8674(87)90006-7. [DOI] [PubMed] [Google Scholar]
- Krakow J.L., Hereld D., Bangs J.D., Hart G.W., Englund P.T. Identification of a glycolipid precursor of theTrypanosoma brucei variant surface glycoprotein. J. Biol. Chem. 1986;261:12147–12153. [PubMed] [Google Scholar]
- Laemmli U.K. Cleavage of structural proteins during the assembly of the head of Bacteriophage T4. Nature (London) 1970;227:680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Le Bivic, A., Real, F., Rodriguez-Boulan, E. 1989. Vectorial targeting of apical and basolateral plasma membrane proteins in a human adenocarcinoma epithelial cell line.Proc. Natl. Acad. Sci. USA (in press) [DOI] [PMC free article] [PubMed]
- Lisanti M.P., Caras I.W., Davitz M.A., Rodriguez-Boulan E. A glycophospholipid membrane anchor acts as an apical targeting signal in polarized epithelial cells. J. Cell Biol. 1989;109:2145–2156. doi: 10.1083/jcb.109.5.2145. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lisanti M.P., Sargiacomo M., Graeve L., Saltiel A.R., Rodriguez-Boulan E. Polarized apical distribution of glycosyl-phosphatidylinositol anchored proteins in a renal epithelial cell line. Proc. Natl. Acad. Sci. USA. 1988;285:9557–9561. doi: 10.1073/pnas.85.24.9557. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Low M.G., Ferguson M.A.J., Futterman A.H., Silman I. Covalently attached phosphatidylinositol as a hydrophobic anchor for membrane proteins. Trends Biochem. Sci. 1986;11:212–214. [Google Scholar]
- Low M., Saltiel A.R. Structural and functional roles of glycosyl-phosphatidylinositol in membranes. Science. 1988;239:268–275. doi: 10.1126/science.3276003. [DOI] [PubMed] [Google Scholar]
- Machamer C.E., Rose J.K. A specific transmembrane domain of a coronavirus El glycoprotein is required for its retention in the Golgi region. J. Cell. Biol. 1987;105:1205–1214. doi: 10.1083/jcb.105.3.1205. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Masterson W.J., Doering T.L., Hart G.W., Englund P.T. A novel pathway for glycan assembly: Biosynthesis of the glycosyl-phosphatidylinositol anchor of theTrypanosome variant surface glycoprotein. Cell. 1989;56:793–800. doi: 10.1016/0092-8674(89)90684-3. [DOI] [PubMed] [Google Scholar]
- Medof M.E., Walter E.I., Rutgers J.L., Knowles D.M., Nussenzweig V. Identification of the complement decay-accelerating factor (DAF) on epithelium and glandular cells and in body fluids. J. Exp. Med. 1987;165:848–864. doi: 10.1084/jem.165.3.848. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Meiss H.K., Green R.F., Rodriguez-Boulan E. Lectin resistant mutants of polarized epithelial cells. Mol. Cell. Biol. 1982;2:1287–1294. doi: 10.1128/mcb.2.10.1287. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Menon A.K., Mayor S., Ferguson M.A.J., Duszenko M., Cross G.A.M. Candidate glycophospholipid precursor for the glycosylphosphatidylinositol membrane anchor ofTrypanosoma brucei variant surface glycoproteins. J. Biol. Chem. 1988;263:1970–1977. [PubMed] [Google Scholar]
- Ojakian G.K., Romain R.E., Herz R.E. A distal nephron glycoprotein that has different cell surface distributions in MDCK cell sublines. Am. J. Physiol. 1987;253:C433–C443. doi: 10.1152/ajpcell.1987.253.3.C433. [DOI] [PubMed] [Google Scholar]
- Pfaller W., Fischer W.M., Gstraunthaler G. Stereologic analysis of LCC-PK1 differentiation. Pfluegers Arch. 1988;411:R83. [Google Scholar]
- Pfeiffer S.R., Rothman J.E. Biosynthetic protein transport and sorting by the endoplasmic reticulum and Golgi. Annu. Rev. Biochem. 1987;56:829–852. doi: 10.1146/annurev.bi.56.070187.004145. [DOI] [PubMed] [Google Scholar]
- Pinto M., Robine-Leon S., Appay M.D., Kedinger M., Triadou N., Dussaulx E., Lacroix B., Simon-Assmann P., Haffen K., Fogh J., Zweibaum A. Enterocyte-like differentiation and polarization of the human colon carcinoma cell line Caco-2 in culture. Biol Cell. 1983;47:323–330. [Google Scholar]
- Poruchynsky M.S., Atkinson P.H. Primary sequence domains required for the retention of Rotavirus VP7 in the endoplasmic reticulum. J. Cell Biol. 1988;107:1697–1706. doi: 10.1083/jcb.107.5.1697. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pryde J.G. Triton X-114: A detergent that has come in from the cold. Trends Biochem. Sci. 1986;11:160–163. [Google Scholar]
- Rabito C.A., Kreisberg J.I., Wight D. Alkaline phosphatase and gamma-glutamyl transpeptidase as polarization markers during the organization of LLC-PK1 cells into an epithelial membrane. J. Biol. Chem. 1984;259:574–582. [PubMed] [Google Scholar]
- Roberts W.L., Myher J.J., Kuksis A., Low M.G., Rosenberry T.L. Lipid analysis of the glycoinositol phospholipid membrane anchor of human erythrocyte acetylcholinesterase. Palmitoylation of inositol results in resistance to phosphatidylinositol-specific phospholipase C. J. Biol. Chem. 1988;263:18766–18775. [PubMed] [Google Scholar]
- Rodriguez-Boulan E. Polarized budding of viruses from epithelial cells. Methods Enzymol. 1983;98:486–501. doi: 10.1016/0076-6879(83)98176-4. [DOI] [PubMed] [Google Scholar]
- Rodriguez-Boulan E., Nelson W.J. Morphogenesis of the polarized epithelial cell phenotype. Science. 1989;245:718–725. doi: 10.1126/science.2672330. [DOI] [PubMed] [Google Scholar]
- Rodriguez-Boulan E., Salas P.J.I. External and internal signals for surface molecular polarization of epithelial cells. Annu. Rev. Physiol. 1989;51:741–754. doi: 10.1146/annurev.ph.51.030189.003521. [DOI] [PubMed] [Google Scholar]
- Rodriguez-Boulan E., Salas P.J., Sargiacomo M., Lisanti M., Le Bivic A., Sambuy Y., Vega-Salas D., Graeve L. Methods to estimate the polarized distribution of surface antigens in cultured epithelial cells. In: Tartakoff A., editor. Methods in Cell Biology. New York: Academic; 1989. pp. 37–56. [DOI] [PubMed] [Google Scholar]
- Rousset M. The human colon carcinoma cell lines HT-29 and Caco-2: Two in vitro models for the study of intestinal differentiation. Biochimie. 1986;68:1035–1040. doi: 10.1016/s0300-9084(86)80177-8. [DOI] [PubMed] [Google Scholar]
- Sack T.L., Gum J.R., Low M.G., Young S.K. Release of carcinoembryonic antigen from human colon cancer cells by a phosphatidylinositol-specific phospholipase C. J. Clin. Invest. 1988;82:586–593. doi: 10.1172/JCI113636. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sargiacomo M., Lisanti M.P., Graeve L., Le Bivic A., Rodriguez-Boulan E. Integral and peripheral protein composition of the apical and basolateral membrane domains in MDCK cells. J. Membrane Biol. 1989;107:277–288. doi: 10.1007/BF01871942. [DOI] [PubMed] [Google Scholar]
- Sly W. The uptake and transport of lysosomal enzymes. In: Horowitz M.I., editor. The Glycoconjugates. New York: Academic; 1982. pp. 3–25. [Google Scholar]
- Takami N., Misumi Y., Kuroki M., Matsuoka Y., Ikehara Y. Evidence for carboyl-terminal processing and glycolipid anchoring of human carcinoembryonic antigen. J. Biol. Chem. 1988;263:12716–12720. [PubMed] [Google Scholar]
- Takesue Y., Yokota K., Nishi Y., Taguchi R., Ikezawa H. Solubilization of trehalase from rabbit renal and intestinal brush-border membranes by a phosphatidylinositol-specific phospholipase C. FEBS Lett. 1986;201:5–8. doi: 10.1016/0014-5793(86)80560-9. [DOI] [PubMed] [Google Scholar]
- Thompson T.E., Tillack T.W. Organization of glycosphingolipids in bilayers and plasma membranes of mammalian cells. Annu. Rev. Biophys. Biophys. Chem. 1985;14:361–386. doi: 10.1146/annurev.bb.14.060185.002045. [DOI] [PubMed] [Google Scholar]
- Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: Procedure and some applications. Proc. Natl. Acad. Sci. USA. 1979;76:4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
- van Meer G. How epithelia grease their microvilli. Trends Biochem. Sci. 1988;13:242–243. doi: 10.1016/0968-0004(88)90156-9. [DOI] [PubMed] [Google Scholar]
- van Meer G., Stelzer F.H.K., Wijnaendts-van Resandt R.W., Simons K. Sorting of sphingolipids in epithelial (Madin-Darby canine kidney) cells. J. Cell Biol. 1987;105:1623–1635. doi: 10.1083/jcb.105.4.1623. [DOI] [PMC free article] [PubMed] [Google Scholar]
- van Meer G., Simons K. Lipid polarity and sorting in epithelial cells. J. Cell Biochem. 1988;36:51–58. doi: 10.1002/jcb.240360106. [DOI] [PubMed] [Google Scholar]
- Vega-Salas D.E., Salas P.J.I., Gundersen D., Rodriguez-Boulan E. Formation of the apical pole of epithelial (MDCK) cells: Polarity of an apical protein is independent of tight junctions while segregation of a basolateral marker requires cell-cell interactions. J. Cell Biol. 1987;104:905–916. doi: 10.1083/jcb.104.4.905. [DOI] [PMC free article] [PubMed] [Google Scholar]
- von Bonsdorff C.-H., Fuller S., Simons K. Apical and basolateral endocytosis in Madin-Darby canine kidney (MDCK) cells grown in nitrocellulose filters. EMBO J. 1985;11:2781–2792. doi: 10.1002/j.1460-2075.1985.tb04004.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wandinger-Ness, A., Simons, K. 1989. The polarized transport of surface proteins and lipids in epithelial cells.In: Intracellular Trafficking of Proteins. J. Hanover and C. Steer, editors. Cambridge University Press (in press)
- Wieland F.T., Gleason M.L., Serafini T.A., Rothman J.E. The rate of bulk flow from the endoplasmic reticulum to the cell surface. Cell. 1987;50:289–300. doi: 10.1016/0092-8674(87)90224-8. [DOI] [PubMed] [Google Scholar]