Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 1990;113(2):155–167. doi: 10.1007/BF01872889

Preferred apical distribution of glycosyl-phosphatidylinositol (GPI) anchored proteins: A highly conserved feature of the polarized epithelial cell phenotype

Michael P Lisanti 1, André Le Bivic 1, Alan R Saltiel 2, Enrique Rodriguez-Boulan 1
PMCID: PMC7087518  PMID: 2138677

Summary

We use a sensitive biotin polarity assay to survey the surface distribution of glycosyl-phosphatidylinositol (GPI) anchored proteins in five model epithelial cell lines derived from different species (dog, pig, man) and tissues, i.e., kidney (MDCK I, MDCK II, LLC-PK1) and intestine (Caco-2 and SK-CO15). After biotinylation of apical or basolateral surfaces of confluent monolayers grown on polycarbonate filters, GPI-anchored proteins are identified by their shift from a Triton X-114 detergent-rich phase to a detergent-poor phase in the presence of phosphatidylinositol-specific phospholipase C. All GPI-anchored proteins detected (3–9 per cell type, at least 13 different proteins) are found to be apically polarized; no GPI-anchored protein is observed preferentially localized to the basal surface. One of the GPI-anchored proteins is identified as carcinoembryonic antigen (CEA). Survey of MDCK II-RCAr, a mutant cell line with a pleiotropic defect in galactosylation of glycoproteins and glycolipids (that presumably affects GPI anchors) also reveals an apical polarization of all GPI-anchored proteins. In contrast, analysis of MDCK II-ConA′ (a mutant cell line with an unknown defect in glycosylation) revealed five GPI-anchored proteins, two of which appeared relatively unpolarized. Our results indicate that the polarized apical distribution of GPI-anchored proteins is highly conserved across species and tissue-type and may depend on glycosylation.

Key Words: protein targeting, biotin labeling, epithelial polarity, glycolipids, glycosyl-phosphatidylinositol

References

  1. Bangs J.D., Hereld D., Krakow J.L., Hart G.W., Englund P.T. Rapid processing of the carboxyl terminus of a trypanosome variant surface glycoprotein. Proc. Natl. Acad. Sci. USA. 1985;82:3207–3211. doi: 10.1073/pnas.82.10.3207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bensadoun A., Weinstein D. Assay of proteins in the presence of interfering materials. Anal. Biochem. 1976;70:241–251. doi: 10.1016/s0003-2697(76)80064-4. [DOI] [PubMed] [Google Scholar]
  3. Birk H., Koepsell H. Reaction of monoclonal antibodies with plasma membrane proteins after binding on nitrocellulose: Renaturation of antigenic sites and reduction of nonspecific antibody binding. Anal. Biochem. 1987;164:12–22. doi: 10.1016/0003-2697(87)90360-5. [DOI] [PubMed] [Google Scholar]
  4. Blobel G. Intracellular protein topogenesis. Proc. Natl. Acad. Sci. USA. 1980;77:1496–1500. doi: 10.1073/pnas.77.3.1496. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bordier C. Phase separation of integral membrane proteins in Triton X-114 solution. J. Biol. Chem. 1981;256:1604–1607. [PubMed] [Google Scholar]
  6. Brandli A.W., Hansson G.C., Rodriguez-Boulan E., Simons K. A polarized epithelial cell mutant deficient in translocation of UDP-galactose into the Golgi complex. J. Biol. Chem. 1988;263:16283–16290. [PubMed] [Google Scholar]
  7. Brown D.A., Crise B., Rose J.K. Mechanism of membrane anchoring affects polarized expression of two proteins in MDCK cells. Science. 1989;245:1499–1501. doi: 10.1126/science.2571189. [DOI] [PubMed] [Google Scholar]
  8. Brown D.A., Rose J.K. Polarized expression of hybrid proteins in MDCK cells. J. Cell Biol. 1988;107:782a. [Google Scholar]
  9. Caplan M.J., Anderson H.C., Palade G.E., Jamieson J.D. Intracellular sorting and polarized cell surface delivery of (Na+, K+) ATPase, an endogenous component of MDCK cell basolateral plasma membranes. Cell. 1986;46:623–631. doi: 10.1016/0092-8674(86)90888-3. [DOI] [PubMed] [Google Scholar]
  10. Chan B.L., Lisanti M.P., Rodriguez-Boulan E., Saltiel A.R. Insulin-stimulated release of lipoprotein lipase by metabolism of its phosphatidylinositol anchor. Science. 1988;241:1670–1672. doi: 10.1126/science.241.4873.1670. [DOI] [PubMed] [Google Scholar]
  11. Chapman A., Fujimoto K., Kornfeld S. The primary glycosylation defect in class E Thy-1 negative mutant mouse lymphoma cell lines is an ability to synthesize dolichol-p-mannose. J. Biol. Chem. 1980;255:4441–4446. [PubMed] [Google Scholar]
  12. Conzelmann A., Spiazzi A., Bron C. Glycolipid anchors are attached to Thy-1 glycoprotein rapidly after translation. Biochem. J. 1987;246:605–610. doi: 10.1042/bj2460605. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Conzelmann A., Spiazzi A., Hyman R., Bron C. Anchoring of membrane proteins via phosphatidylinositol is deficient in two classes of Thy-1 negative mutant lymphoma cells. EMBO J. 1986;5:3291–3296. doi: 10.1002/j.1460-2075.1986.tb04642.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Cross G.A.M. Eukaryotic protein modification and membrane attachment via phosphatidylinositol. Cell. 1987;48:179–181. doi: 10.1016/0092-8674(87)90419-3. [DOI] [PubMed] [Google Scholar]
  15. Davitz M.A., Hereld D., Shak S., Krakow J., Englund P.T., Nussenzweig V. A glycan-phosphatidylinositol-specific phospholipase D in human serum. Science. 1987;238:81–84. doi: 10.1126/science.2443973. [DOI] [PubMed] [Google Scholar]
  16. Davitz M.A., Low M.G., Nussenzweig V. Release of decay-accelerating factor (DAF) from the cell membrane by phosphatidylinositol-specific phospholipase C (PI-PLC) J. Exp. Med. 1986;163:1150–1161. doi: 10.1084/jem.163.5.1150. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Ferguson M.A.J., Duszenko M., Lamont G.S., Overath P., Cross G.A.M. Biosynthesis ofTrypanosoma brucei variant surface glycoproteins. J. Biol. Chem. 1986;261:356–362. [PubMed] [Google Scholar]
  18. Ferguson M.A.J., Homans S.W., Dwek R.A., Rademacher T.W. Glycosyl-phosphatidylinositol moiety that anchorsTrypanosoma brucei variant surface glycoprotein to the membrane. Science. 1988;239:753–759. doi: 10.1126/science.3340856. [DOI] [PubMed] [Google Scholar]
  19. Ferguson M.A.J., Williams A.F. Cell-surface anchoring of proteins via glycosyl-phosphatidylinositol structures. Annu. Rev. Biochem. 1988;57:285–320. doi: 10.1146/annurev.bi.57.070188.001441. [DOI] [PubMed] [Google Scholar]
  20. Fogh J., Trempe G. New human tumor cell lines. In: Fogh J., editor. Human Tumor Cells in vitro. New York: Plenum; 1975. pp. 115–140. [Google Scholar]
  21. Grab D.J., Webster P., Verjee Y. The intracellular pathway and assembly of newly formed variable surface glycoprotein ofTrypanosoma brucei. Proc. Natl. Acad. Sci. USA. 1984;81:7703–7707. doi: 10.1073/pnas.81.24.7703. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Grasset E., Pinto M., Dussaulx E., Zweibaum A., Desjeux J.F. Epithelial properties of human colonic carcinoma cell line Caco-2: Electrical parameters. Am. J. Physiol. 1984;247:C260–C267. doi: 10.1152/ajpcell.1984.247.3.C260. [DOI] [PubMed] [Google Scholar]
  23. Gstraunthaler G.J.A. Epithelial cells in tissue culture. Renal Physiol. Biochem. 1988;11:1–42. doi: 10.1159/000173147. [DOI] [PubMed] [Google Scholar]
  24. Hamada Y., Yamamura M., Kohshiro H., Yamamoto M., Nagura H., Watanbe K. Immunohistochemical study of carcinoembryonic antigen in patients with colorectal cancer. Cancer. 1985;55:136–141. doi: 10.1002/1097-0142(19850101)55:1<136::aid-cncr2820550121>3.0.co;2-p. [DOI] [PubMed] [Google Scholar]
  25. Handler J.S., Perkins F.M., Johnson J.P. Studies of renal function using cell culture techniques. Am. J. Physiol. 1980;238:F1–F9. doi: 10.1152/ajprenal.1980.238.1.F1. [DOI] [PubMed] [Google Scholar]
  26. Hauri H.P., Sterchi E.E., Bienz D., Fransen J.A.M., Marxen A. Expression and intracellular transport of microvillus membrane hydrolases in human intestinal epithelial cells. J. Cell Biol. 1985;101:838–851. doi: 10.1083/jcb.101.3.838. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. He H., Finne J., Goridis C. Biosynthesis, membrane association, and release of N-CAM-120, a phosphatidylinositol-linked form of the neural cell adhesion molecule. J. Cell. Biol. 1987;105:2489–2500. doi: 10.1083/jcb.105.6.2489. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Homans S.W., Ferguson M.A.J., Dwek R.A., Rademacher T.W., Anand R., Williams A.F. Complete structure of the glycosyl phosphatidylinositol membrane anchor of rat brain Thy-1 glycoprotein. Nature (London) 1988;333:269–272. doi: 10.1038/333269a0. [DOI] [PubMed] [Google Scholar]
  29. Hull R.N., Cherry W.R., Weaver G.W. The origin and characteristics of a pig kidney cell strain, LLC-PK. In Vitro. 1976;12:670–677. doi: 10.1007/BF02797469. [DOI] [PubMed] [Google Scholar]
  30. Kollias G., Evans D.J., Ritter M., Beech J., Morris R., Grosveld F. Ectopic expression of Thy-1 in the kidneys of transgenic mice induces functional and proliferative abnormalities. Cell. 1987;51:21–31. doi: 10.1016/0092-8674(87)90006-7. [DOI] [PubMed] [Google Scholar]
  31. Krakow J.L., Hereld D., Bangs J.D., Hart G.W., Englund P.T. Identification of a glycolipid precursor of theTrypanosoma brucei variant surface glycoprotein. J. Biol. Chem. 1986;261:12147–12153. [PubMed] [Google Scholar]
  32. Laemmli U.K. Cleavage of structural proteins during the assembly of the head of Bacteriophage T4. Nature (London) 1970;227:680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  33. Le Bivic, A., Real, F., Rodriguez-Boulan, E. 1989. Vectorial targeting of apical and basolateral plasma membrane proteins in a human adenocarcinoma epithelial cell line.Proc. Natl. Acad. Sci. USA (in press) [DOI] [PMC free article] [PubMed]
  34. Lisanti M.P., Caras I.W., Davitz M.A., Rodriguez-Boulan E. A glycophospholipid membrane anchor acts as an apical targeting signal in polarized epithelial cells. J. Cell Biol. 1989;109:2145–2156. doi: 10.1083/jcb.109.5.2145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Lisanti M.P., Sargiacomo M., Graeve L., Saltiel A.R., Rodriguez-Boulan E. Polarized apical distribution of glycosyl-phosphatidylinositol anchored proteins in a renal epithelial cell line. Proc. Natl. Acad. Sci. USA. 1988;285:9557–9561. doi: 10.1073/pnas.85.24.9557. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Low M.G., Ferguson M.A.J., Futterman A.H., Silman I. Covalently attached phosphatidylinositol as a hydrophobic anchor for membrane proteins. Trends Biochem. Sci. 1986;11:212–214. [Google Scholar]
  37. Low M., Saltiel A.R. Structural and functional roles of glycosyl-phosphatidylinositol in membranes. Science. 1988;239:268–275. doi: 10.1126/science.3276003. [DOI] [PubMed] [Google Scholar]
  38. Machamer C.E., Rose J.K. A specific transmembrane domain of a coronavirus El glycoprotein is required for its retention in the Golgi region. J. Cell. Biol. 1987;105:1205–1214. doi: 10.1083/jcb.105.3.1205. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Masterson W.J., Doering T.L., Hart G.W., Englund P.T. A novel pathway for glycan assembly: Biosynthesis of the glycosyl-phosphatidylinositol anchor of theTrypanosome variant surface glycoprotein. Cell. 1989;56:793–800. doi: 10.1016/0092-8674(89)90684-3. [DOI] [PubMed] [Google Scholar]
  40. Medof M.E., Walter E.I., Rutgers J.L., Knowles D.M., Nussenzweig V. Identification of the complement decay-accelerating factor (DAF) on epithelium and glandular cells and in body fluids. J. Exp. Med. 1987;165:848–864. doi: 10.1084/jem.165.3.848. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Meiss H.K., Green R.F., Rodriguez-Boulan E. Lectin resistant mutants of polarized epithelial cells. Mol. Cell. Biol. 1982;2:1287–1294. doi: 10.1128/mcb.2.10.1287. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Menon A.K., Mayor S., Ferguson M.A.J., Duszenko M., Cross G.A.M. Candidate glycophospholipid precursor for the glycosylphosphatidylinositol membrane anchor ofTrypanosoma brucei variant surface glycoproteins. J. Biol. Chem. 1988;263:1970–1977. [PubMed] [Google Scholar]
  43. Ojakian G.K., Romain R.E., Herz R.E. A distal nephron glycoprotein that has different cell surface distributions in MDCK cell sublines. Am. J. Physiol. 1987;253:C433–C443. doi: 10.1152/ajpcell.1987.253.3.C433. [DOI] [PubMed] [Google Scholar]
  44. Pfaller W., Fischer W.M., Gstraunthaler G. Stereologic analysis of LCC-PK1 differentiation. Pfluegers Arch. 1988;411:R83. [Google Scholar]
  45. Pfeiffer S.R., Rothman J.E. Biosynthetic protein transport and sorting by the endoplasmic reticulum and Golgi. Annu. Rev. Biochem. 1987;56:829–852. doi: 10.1146/annurev.bi.56.070187.004145. [DOI] [PubMed] [Google Scholar]
  46. Pinto M., Robine-Leon S., Appay M.D., Kedinger M., Triadou N., Dussaulx E., Lacroix B., Simon-Assmann P., Haffen K., Fogh J., Zweibaum A. Enterocyte-like differentiation and polarization of the human colon carcinoma cell line Caco-2 in culture. Biol Cell. 1983;47:323–330. [Google Scholar]
  47. Poruchynsky M.S., Atkinson P.H. Primary sequence domains required for the retention of Rotavirus VP7 in the endoplasmic reticulum. J. Cell Biol. 1988;107:1697–1706. doi: 10.1083/jcb.107.5.1697. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Pryde J.G. Triton X-114: A detergent that has come in from the cold. Trends Biochem. Sci. 1986;11:160–163. [Google Scholar]
  49. Rabito C.A., Kreisberg J.I., Wight D. Alkaline phosphatase and gamma-glutamyl transpeptidase as polarization markers during the organization of LLC-PK1 cells into an epithelial membrane. J. Biol. Chem. 1984;259:574–582. [PubMed] [Google Scholar]
  50. Roberts W.L., Myher J.J., Kuksis A., Low M.G., Rosenberry T.L. Lipid analysis of the glycoinositol phospholipid membrane anchor of human erythrocyte acetylcholinesterase. Palmitoylation of inositol results in resistance to phosphatidylinositol-specific phospholipase C. J. Biol. Chem. 1988;263:18766–18775. [PubMed] [Google Scholar]
  51. Rodriguez-Boulan E. Polarized budding of viruses from epithelial cells. Methods Enzymol. 1983;98:486–501. doi: 10.1016/0076-6879(83)98176-4. [DOI] [PubMed] [Google Scholar]
  52. Rodriguez-Boulan E., Nelson W.J. Morphogenesis of the polarized epithelial cell phenotype. Science. 1989;245:718–725. doi: 10.1126/science.2672330. [DOI] [PubMed] [Google Scholar]
  53. Rodriguez-Boulan E., Salas P.J.I. External and internal signals for surface molecular polarization of epithelial cells. Annu. Rev. Physiol. 1989;51:741–754. doi: 10.1146/annurev.ph.51.030189.003521. [DOI] [PubMed] [Google Scholar]
  54. Rodriguez-Boulan E., Salas P.J., Sargiacomo M., Lisanti M., Le Bivic A., Sambuy Y., Vega-Salas D., Graeve L. Methods to estimate the polarized distribution of surface antigens in cultured epithelial cells. In: Tartakoff A., editor. Methods in Cell Biology. New York: Academic; 1989. pp. 37–56. [DOI] [PubMed] [Google Scholar]
  55. Rousset M. The human colon carcinoma cell lines HT-29 and Caco-2: Two in vitro models for the study of intestinal differentiation. Biochimie. 1986;68:1035–1040. doi: 10.1016/s0300-9084(86)80177-8. [DOI] [PubMed] [Google Scholar]
  56. Sack T.L., Gum J.R., Low M.G., Young S.K. Release of carcinoembryonic antigen from human colon cancer cells by a phosphatidylinositol-specific phospholipase C. J. Clin. Invest. 1988;82:586–593. doi: 10.1172/JCI113636. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Sargiacomo M., Lisanti M.P., Graeve L., Le Bivic A., Rodriguez-Boulan E. Integral and peripheral protein composition of the apical and basolateral membrane domains in MDCK cells. J. Membrane Biol. 1989;107:277–288. doi: 10.1007/BF01871942. [DOI] [PubMed] [Google Scholar]
  58. Sly W. The uptake and transport of lysosomal enzymes. In: Horowitz M.I., editor. The Glycoconjugates. New York: Academic; 1982. pp. 3–25. [Google Scholar]
  59. Takami N., Misumi Y., Kuroki M., Matsuoka Y., Ikehara Y. Evidence for carboyl-terminal processing and glycolipid anchoring of human carcinoembryonic antigen. J. Biol. Chem. 1988;263:12716–12720. [PubMed] [Google Scholar]
  60. Takesue Y., Yokota K., Nishi Y., Taguchi R., Ikezawa H. Solubilization of trehalase from rabbit renal and intestinal brush-border membranes by a phosphatidylinositol-specific phospholipase C. FEBS Lett. 1986;201:5–8. doi: 10.1016/0014-5793(86)80560-9. [DOI] [PubMed] [Google Scholar]
  61. Thompson T.E., Tillack T.W. Organization of glycosphingolipids in bilayers and plasma membranes of mammalian cells. Annu. Rev. Biophys. Biophys. Chem. 1985;14:361–386. doi: 10.1146/annurev.bb.14.060185.002045. [DOI] [PubMed] [Google Scholar]
  62. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: Procedure and some applications. Proc. Natl. Acad. Sci. USA. 1979;76:4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. van Meer G. How epithelia grease their microvilli. Trends Biochem. Sci. 1988;13:242–243. doi: 10.1016/0968-0004(88)90156-9. [DOI] [PubMed] [Google Scholar]
  64. van Meer G., Stelzer F.H.K., Wijnaendts-van Resandt R.W., Simons K. Sorting of sphingolipids in epithelial (Madin-Darby canine kidney) cells. J. Cell Biol. 1987;105:1623–1635. doi: 10.1083/jcb.105.4.1623. [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. van Meer G., Simons K. Lipid polarity and sorting in epithelial cells. J. Cell Biochem. 1988;36:51–58. doi: 10.1002/jcb.240360106. [DOI] [PubMed] [Google Scholar]
  66. Vega-Salas D.E., Salas P.J.I., Gundersen D., Rodriguez-Boulan E. Formation of the apical pole of epithelial (MDCK) cells: Polarity of an apical protein is independent of tight junctions while segregation of a basolateral marker requires cell-cell interactions. J. Cell Biol. 1987;104:905–916. doi: 10.1083/jcb.104.4.905. [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. von Bonsdorff C.-H., Fuller S., Simons K. Apical and basolateral endocytosis in Madin-Darby canine kidney (MDCK) cells grown in nitrocellulose filters. EMBO J. 1985;11:2781–2792. doi: 10.1002/j.1460-2075.1985.tb04004.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  68. Wandinger-Ness, A., Simons, K. 1989. The polarized transport of surface proteins and lipids in epithelial cells.In: Intracellular Trafficking of Proteins. J. Hanover and C. Steer, editors. Cambridge University Press (in press)
  69. Wieland F.T., Gleason M.L., Serafini T.A., Rothman J.E. The rate of bulk flow from the endoplasmic reticulum to the cell surface. Cell. 1987;50:289–300. doi: 10.1016/0092-8674(87)90224-8. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Membrane Biology are provided here courtesy of Nature Publishing Group

RESOURCES