Abstract
Analyses of immunoglobulin (Ig) variable (V) region gene usage in the immune response, estimates ofV gene germline complexity, and other nucleic acid hybridization-based studies depend on the extent to which such genes are related (i. e., sequence similarity) and their organization in gene families. While mouseIgh heavy chainV region (V H) gene families are relatively well-established, a corresponding systematic classification ofIgk light chainV region (V k) genes has not been reported. The present analysis, in the course of which we reviewed the known extent of theV k germline gene repertoire andV k gene usage in a variety of responses to foreign and self antigens, provides a classification of mouseV k genes in gene families composed of members with >80% overall nucleic acid sequence similarity. This classification differed in several aspects from that ofV H genes: only someV k gene families were as clearly separated (by >25% sequence dissimilarity) as typicalV H gene families; mostV k gene families were closely related and, in several instances, members from different families were very similar (>80%) over large sequence portions; frequently, classification by nucleic acid sequence similarity diverged from existing classifications based on amino-terminal protein sequence similarity. Our data have implications forV k gene analyses by nucleic acid hybridization and describe potentially important differences in sequence organization betweenV H andV k genes.
Keywords: Nucleic Acid, Gene Family, Protein Sequence, Region Gene, Sequence Similarity
References
- Akolkar P. N., Sikder S. K., Bhattacharya S. B., Liao J., Gruezo F., Morrison S. L., Kabat E. A. Different VL and VH germline genes are used to produce similar combining sites with specificity for alpha (1-->6) dextrans. J Immunol. 1987;138:4472–4479. [PubMed] [Google Scholar]
- Alt F. W., Blackwell K., DePinho R. A., Reth M. G., Yancopoulos G. D. Regulation of genome rearrangement events during lymphocyte differentiation. Immunol Rev. 1986;89:5–30. doi: 10.1111/j.1600-065X.1986.tb01470.x. [DOI] [PubMed] [Google Scholar]
- Altenburger W., Steinmetz M., Zachau H. G. Functional and non-functional joining in immunoglobulin light chain genes of a mouse myeloma. Nature. 1980;287:603–607. doi: 10.1038/287603a0. [DOI] [PubMed] [Google Scholar]
- Beidler C. B., Ludwig J. R., Cardenas J., Phelps J., Papworth C. G., Melcher E., Sierzega M., Myers L. J., Unger B. W., Fisher M., David G. S., Johnson M. J. Cloning and high level expression of a chimeric antibody with specificity for human carcinoembryonic antigen. J Immunol. 1988;141:4053–4060. [PubMed] [Google Scholar]
- Berek C. The D segment defines the T15 idiotope: the immunoresponse of A/J mice toPneumococcus pneumoniae. Eur J Immunol. 1984;14:1043–1048. doi: 10.1002/eji.1830141115. [DOI] [PubMed] [Google Scholar]
- Berek C., Milstein C. Mutation drift and repertoire shift in the maturation of the immune response. Immunol Rev. 1987;96:23–41. doi: 10.1111/j.1600-065X.1987.tb00507.x. [DOI] [PubMed] [Google Scholar]
- Berek C., Griffiths G. M., Milstein C. Molecular events during maturation of the immune response to oxazolone. Nature. 1985;316:412–418. doi: 10.1038/316412a0. [DOI] [PubMed] [Google Scholar]
- Berek C., Jarvis J. M., Milstein C. Activation of memory and virgin B cell clones in hyperimmune animals. Eur J Immunol. 1987;17:1121–1121. doi: 10.1002/eji.1830170808. [DOI] [PubMed] [Google Scholar]
- Borden P., Kabat E. A. Nucleotide sequence of the cDNAs encoding the variable region heavy and light chains of a myeloma protein specific for the terminal nonreducing end of alpha (1–6) dextran. Proc Natl Acad Sci USA. 1987;84:2440–2443. doi: 10.1073/pnas.84.8.2440. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Boyd T. M., Goldrick M. M., Gottlieb P. D. Structural differences in a single gene encoding the VkSer group of light chains explain the existence of two mouse light-chain genetic markers. Proc Natl Acad Sci USA. 1986;83:9134–9138. doi: 10.1073/pnas.83.23.9134. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brodeur P. H., Riblet R. The immunoglobulin heavy chain variable region (Igh-V) locus in the mouse. I. One hundred Igh-V genes comprise seven families, of homologous genes. Eur J Immunol. 1984;14:922–930. doi: 10.1002/eji.1830141012. [DOI] [PubMed] [Google Scholar]
- Bruck C., Co M. S., Slaoui M., Gaulton G. N., Smith T., Fields B. N., Mullins J. I., Greene M. I. Nucleic acid sequence of an internal image-bearing monoclonal anti-idiotype and its comparison to the sequence of the external antigen. Proc Natl Acad Sci USA. 1986;83:6578–6582. doi: 10.1073/pnas.83.17.6578. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Buckel P., Huebner-Parajsz C., Mattes R., Lenz H., Haug H., Beaucamp K. Cloning and nucleotide sequence of heavy-and light-chain cDNAs from creatine-kinase-specific monoclonal antibody. Gene. 1987;51:13–19. doi: 10.1016/0378-1119(87)90469-0. [DOI] [PubMed] [Google Scholar]
- Cabilly S., Riggs A. D., Pande H., Shively J. E., Holmes W. E., Rey M., Perry L. J., Wetzel R., Heyneker H. L. Generation of antibody activity from immunoglobulin polypeptide chains produced inEscherichia coli. Proc Natl Acad Sci USA. 1984;81:3273–3277. doi: 10.1073/pnas.81.11.3273. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Campbell M. J. Idiotype vaccination against murine B cell lymphoma. Humoral and cellular responses elicited by tumor-derived immunoglobulin M and its molecular subunits. J Immunol. 1987;139:2825–2833. [PubMed] [Google Scholar]
- Clarke S. H., Huppi K., Ruezinsky D., Staudt L., Gerhard W., Weigert W. Inter- and intraclonal diversity in the antibody response to influenza hemagglutinin. J Exp Med. 1985;161:687–704. doi: 10.1084/jem.161.4.687. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Corbet S., Milili M., Fougereau M., Schiff C. Two Vk germline genes related to the GAT idiotypic network (Ab1 and Ab3/Ab1’) account for the major subfamilies of the mouse Vk-1 variability subgroup. J Immunol. 1987;138:932–939. [PubMed] [Google Scholar]
- Cory S., Tyler B. M., Adams J. M. Sets of immunoglobulin Vk genes homologous to ten cloned Vk sequences: implications for the number of germline Vk genes. J Mol Appl Genet. 1981;1:103–116. [PubMed] [Google Scholar]
- Darsley M. J., Rees A. R. Nucleotide sequence of five antilysozyme monoclonal antibodies. EMBO J. 1985;4:393–398. doi: 10.1002/j.1460-2075.1985.tb03641.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Devaux C., Moinier D., Mazza G., Guo X., Marchetto S., Fougereau M., Rierres M. Preferential expression of Vk21E on IdX Ia. 7 positive monoclonal anti-I-E antibodies. J Immunol. 1985;134:4024–4030. [PubMed] [Google Scholar]
- D’Hoostelaere L. A., Huppi K., Mock B., Mallett C., Potter M. The Igk L chain allelic groups among the Igk haplotypes and Igk crossover populations suggest a gene order. J Immunol. 1988;141:652–661. [PubMed] [Google Scholar]
- Dildrop R. A new classification of mouse VH sequences. Immunol Today. 1984;5:85–86. doi: 10.1016/0167-5699(84)90034-3. [DOI] [PubMed] [Google Scholar]
- Eilat D., Webster D. M., Rees A. R. V region sequences of anti-DNA and anti-RNA autoantibodies from NZB/NZW F1 mice. J Immunol. 1988;141:1745–1753. [PubMed] [Google Scholar]
- Even J., Griffiths G. M., Berek C., Milstein C. Light chain germ-line genes and the immune response to 2-phenyloxazolone. EMBO J. 1985;4:3439–3445. doi: 10.1002/j.1460-2075.1985.tb04102.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gearhart P. J., Bogenhagen D. F. Clusters of point mutations are found exclusively around rearranged antibody variable genes. Proc Natl Acad Sci USA. 1983;80:3439–3443. doi: 10.1073/pnas.80.11.3439. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Griffiths G. M., Berek C., Kaartinen M., Milstein C. Somatic mutation and the maturation of immune response to 2-phenyloxazolone. Nature. 1984;312:271–275. doi: 10.1038/312271a0. [DOI] [PubMed] [Google Scholar]
- Hawley R. G., Shulman M. J., Murialdo H., Gibson D. M., Hozumi N. Mutant immunoglobulin genes have repetitive DNA elements inserted into their intervening sequences. Proc Natl Acad Sci USA. 1982;79:7425–7429. doi: 10.1073/pnas.79.23.7425. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Heinrich G., Traunecker A., Tonegawa S. Somatic mutation creates diversity in the major group of mouse immunoglobulin kappa light chains. J Exp Med. 1984;159:417–435. doi: 10.1084/jem.159.2.417. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Heller M., Owens J. D., Mushinski J. F., Rudikoff S. Amino acids at the site of Vk-Jk recombination not encoded by germline sequences. J Exp Med. 1987;166:637–646. doi: 10.1084/jem.166.3.637. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Höchtl J., Müller C. R., Zachau H. G. Recombined flanks of the variable and joining segments of immunoglobulin genes. Proc Natl Acad Sci USA. 1982;79:1383–1387. doi: 10.1073/pnas.79.5.1383. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Joho R., Gershenfeld H., Weissman I. L. Evolution of a multigene family of Vk germ line genes. EMBO J. 1984;3:185–191. doi: 10.1002/j.1460-2075.1984.tb01782.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kaartinen M., Maekelae O. Functional analogues of the VkOx1 gene in different strains of mice: evolutionary conservation but diversity based on V-J joining. J Immunol. 1987;138:1613–1617. [PubMed] [Google Scholar]
- Kaartinen M., Griffiths G. M., Markham A. F., Milstein C. mRNA sequences define an unusually restricted IgG response to 2-phenyloxazolone and its early diversification. Nature. 1983;304:320–324. doi: 10.1038/304320a0. [DOI] [PubMed] [Google Scholar]
- Kabat E. A., Wu T. T., Reid-Miller M., Perry H. M., Gottesman K. S. Sequences of Proteins of Immunological Interest. 4th edn. Bethesda: US Department of Health and Human Services, Public Health Service, National Institutes of Health; 1987. [Google Scholar]
- Kearney J. F., Radbruch A., Liesegang B., Rajewsky K. A mouse myeloma cell line that has lost immunoglobulin expression but permits the construction of antibody-searching hybrid cell lines. J Immunol. 1979;123:1548–1550. [PubMed] [Google Scholar]
- Kelley D. E., Wiedemann L. M., Pittet A. C., Strauss S., Nelson K. J., Davis J., Van Ness B., Perry R. P. Nonproductive kappa immunoglobulin genes: recombinational abnormalities and other lesions affecting transcription, RNA processing, turnover, and translation. Mol Cell Biol. 1985;5:1660–1675. doi: 10.1128/mcb.5.7.1660. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kofler R. A new murine Ig VH gene family. J Immunol. 1988;140:4031–4034. [PubMed] [Google Scholar]
- Kofler R., Dixon F. J., Theofilopoulos A. N. The genetic origin of autoantibodies. Immunol Today. 1987;8:374–380. doi: 10.1016/0167-5699(87)90213-1. [DOI] [PubMed] [Google Scholar]
- Kofler R., Noonan D. J., Strohal R., Balderas R. S., Møller N. P. H., Dixon F. J., Theofilopoulos A. N. Molecular analysis of the murine lupus-associated anti-self response: involvement of a large number of heavy and light chain variable region genes. Eur J Immunol. 1987;17:91–95. doi: 10.1002/eji.1830170116. [DOI] [PubMed] [Google Scholar]
- Kofler R., Strohal R., Balderas R. S., Johnson M. E., Noonan D. J., Duchosal M. A., Dixon F. J., Theofilopoulos A. N. Immunoglobulin k light chain variable region gene complex organization and immunoglobulin genes encoding anti-DNA autoantibodies in lupus mice. J Clin Invest. 1988;82:852–860. doi: 10.1172/JCI113689. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kofler R., Duchosal M. A., Dixon F. J. Complexity, polymorphism and connectivity of mouseVk gene families. Immunogenetics. 1989;29:65–74. doi: 10.1007/BF00395853. [DOI] [PubMed] [Google Scholar]
- Kwan S.-P., Rudikoff S., Seidman J. G., Leder P., Scharff M. D. Nucleic acid and protein sequences of phosphocholinebinding light chains. J Exp Med. 1981;153:1366–1370. doi: 10.1084/jem.153.5.1366. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Liu A. Y. Production of a mouse-human chimeric monoclonal antibody to CD20 with potent Fc-dependent biologic activity. J Immunol. 1987;139:3521–3521. [PubMed] [Google Scholar]
- Liu A. Y., Robinson R. R., Hellström K. E., Murray E. D., Jr., Chang C. P., Hellström I. Chimeric mouse-human IgG1 antibody that can mediate lysis of cancer cells. Proc Natl Acad Sci USA. 1987;84:3439–3443. doi: 10.1073/pnas.84.10.3439. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Livant D., Blatt C., Hood L. One heavy chain variable region gene segment subfamily in the BALB/c mouse contains 500–1000 or more members. Cell. 1986;47:461–470. doi: 10.1016/0092-8674(86)90603-3. [DOI] [PubMed] [Google Scholar]
- Lutz C. T., Davie J. M. Genetics and primary structure of Vk gene segments encoding antibody to Streptococcal group A carbohydrate. Comparison of Vk gene structure with idiotope expression. J Immunol. 1988;140:641–645. [PubMed] [Google Scholar]
- Malipiero U. V., Levy N. S., Gearhart P. J. Somatic mutation in anti-phosphorylcholine antibodies. Immunol Rev. 1987;96:59–74. doi: 10.1111/j.1600-065X.1987.tb00509.x. [DOI] [PubMed] [Google Scholar]
- Manser T., Parhami-Seren B., Margolies M. N., Gefter M. L. Somatically mutated forms of a major anti-p-azophenylarsonate antibody variable region with drastically reduced affinity for p-azophenylarsonate. By-products of an antigen-drive immune response? J Exp Med. 1987;166:1456–1463. doi: 10.1084/jem.166.5.1456. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Manser T., Wysocki L. J., Margolies M. N., Gefter M. L. Evolution of antibody variable region structure during the immune response. Immunol Rev. 1987;96:141–162. doi: 10.1111/j.1600-065X.1987.tb00513.x. [DOI] [PubMed] [Google Scholar]
- Matsuda T., Kabat E. A. Variable region cDNA sequences and antigen binding specificity of mouse monoclonal antibodies to isomaltosyl oligosaccharides coupled to proteins. T-dependent analogous of α(1-->6)dextran. J Immunol. 1989;142:863–870. [PubMed] [Google Scholar]
- Max E. E., Seidman J. G., Miller H., Leder P. Variation in the crossover point of kappa immunoglobulin gene V-J recombination: evidence from a cryptic gene. Cell. 1980;21:793–799. doi: 10.1016/0092-8674(80)90442-0. [DOI] [PubMed] [Google Scholar]
- Meek K., Sanz Z., Rathbun G., Nisonoff A., Capra J. D. Identity of the Vk 10-Ars-A gene segments of the A/J and BALB/c strains. Proc Natl Acad Sci USA. 1987;84:6244–6248. doi: 10.1073/pnas.84.17.6244. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Meek K., Johansson B., Schulman J., Bona C., Capra J. D. Nucleotide changes in sequential variants of influenza virus hemagglutinin genes and molecular structures of corresponding monoclonal antibodies specific for each variant. Proc Natl Acad Sci USA. 1989;86:4664–4668. doi: 10.1073/pnas.86.12.4664. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nahmias C., Strosberg A. D., Emorine L. J. The immune response toward beta-adrenergic ligands and their receptors. VIII. Extensive diversity of VH and VL genes encoding anti-alprenolol antibodies. J Immunol. 1988;140:1304–1311. [PubMed] [Google Scholar]
- Near R. I., Haber E. Characterization of the heavy and light chain immunoglobulin variable region genes used in a set of anti-digoxin antibodies. Mol Immunol. 1989;26:371–382. doi: 10.1016/0161-5890(89)90126-0. [DOI] [PubMed] [Google Scholar]
- Nishioka Y., Leder P. Organization and complete sequence of identical embryonic and plasmacytoma kappa V-region genes. J Biol Chem. 1980;255:3691–3694. [PubMed] [Google Scholar]
- Ollier P., Rocca-Serra J., Somme G., Theze J., Fougereau M. The idiotypic network and the internal image: possible regulation of a germ-line network by paucigene encoded Ab2 (anti-idiotypic) antibodies in the GAT system. EMBO J. 1985;4:3681–3688. doi: 10.1002/j.1460-2075.1985.tb04135.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Panka D. J., Margolies M. N. Complete variable region sequences of five homologous high affinity anti-digoxin antibodies. J Immunol. 1987;139:2385–2391. [PubMed] [Google Scholar]
- Panka D. J., Mudgett-Hunter M., Parks D. R., Peterson L. L., Herzenberg L. A., Haber E., Margolies M. N. Variable region framework differences result in decreased or increased affinity of variant anti-digoxin antibodies. Proc Natl Acad Sci USA. 1988;85:3080–3084. doi: 10.1073/pnas.85.9.3080. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Parslow T. G., Blair D. L., Murphy W. J., Granner D. K. Structure of the 5′ ends of immunoglobulin genes: a novel conserved sequence. Proc Natl Acad Sci USA. 1984;81:2650–2654. doi: 10.1073/pnas.81.9.2650. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pech M., Höchtl J., Schnell H., Zachau H. G. Differences between germ-line and rearranged immunoglobulin Vk coding sequences suggest a localized mutation mechanism. Nature. 1981;291:668–670. doi: 10.1038/291668a0. [DOI] [PubMed] [Google Scholar]
- Pennell C. A., Arnold L. W., Haughton G., Clarke S. H. Restricted Ig variable region gene expression among Ly-1+ B cell lymphomas. J Immunol. 1988;141:2788–2796. [PubMed] [Google Scholar]
- Perlmutter R. M., Kearney J. F., Chang S. P., Hood L. E. Developmentally controlled expression of immunoglobulin VH genes. Science. 1985;227:1597–1601. doi: 10.1126/science.3975629. [DOI] [PubMed] [Google Scholar]
- Ponath P. D., Hillis D. M., Gottlieb P. D. Structural and evolutionary comparisons of four alleles of the mouse immunoglobulin kappa chain gene. Igk-VSer. Immunogenetics. 1989;29:249–257. doi: 10.1007/BF00717909. [DOI] [PubMed] [Google Scholar]
- Potter M. Antigen-binding myeloma proteins of mice. Adv Immunol. 1977;25:141–211. doi: 10.1016/S0065-2776(08)60933-5. [DOI] [PubMed] [Google Scholar]
- Potter M., Newell J. B., Rudikoff S., Haber E. Classification of mouse Vk groups based on the partial amino acid sequence to the first invariant tryptophan: impact of 14 new sequences from IgG myeloma proteins. Mol Immunol. 1982;19:1619–1630. doi: 10.1016/0161-5890(82)90273-5. [DOI] [PubMed] [Google Scholar]
- Reininger L., Ollier P., Poncet P., Kaushik A., Jaton J. C. Novel V genes encode virtually identical variable regions of six murine monoclonal anti-bromelain-treated red blood cell autoantibodies. J Immunol. 1987;138:316–323. [PubMed] [Google Scholar]
- Reininger L., Kaushik A., Izui S., Jaton J.-C. A member of a new VH gene family encodes anti-bromelinized mouse red blood cell autoantibodies. Eur J Immunol. 1988;18:1521–1526. doi: 10.1002/eji.1830181008. [DOI] [PubMed] [Google Scholar]
- Riley S. C., Connors S. J., Klinman N. R., Ogata R. T. Preferential expression of variable region heavy chain gene segments by predominant 2,4-dinitrophenyl-specific BALB/c neonatal antibody clonotypes. Proc Natl Acad Sci USA. 1986;83:2589–2593. doi: 10.1073/pnas.83.8.2589. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sablitzky F., Rajewsky K. Molecular basis of an isogeneic antiidiotypic response. EMBO J. 1984;3:3005–3012. doi: 10.1002/j.1460-2075.1984.tb02247.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sahagan B. G. A genetically engineered murine/human chimeric antibody retains specificity for human tumor-associated antigen. J Immunol. 1986;137:1066–1066. [PubMed] [Google Scholar]
- Sanz I., Capra J. D. Vk and Jk gene segments of A/J Ars-A antibodies: somatic recombination generates the essential arginine at the junction of the variable and joining regions. Proc Natl Acad Sci USA. 1987;84:1085–1089. doi: 10.1073/pnas.84.4.1085. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schiff C., Corbet S., Milili M., Fougereau M. Interstrain conservation of the murine GAT-specific antibody Vk repertoire as analyzed at the germline gene level. EMBO J. 1983;2:1771–1776. doi: 10.1002/j.1460-2075.1983.tb01656.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schiff C., Corbet S., Fougereau M. The Ig germline gene repertoire: economy or wastage? Immunol Today. 1988;9:10–14. doi: 10.1016/0167-5699(88)91348-5. [DOI] [PubMed] [Google Scholar]
- Seidman J. G., Leder A., Edgell M. H., Polsky F., Tilghman S. M., Tiemeier D. C., Leder P. Multiple related immunoglobulin variable-region genes identified by cloning and sequence analysis. Proc Natl Acad Sci USA. 1978;75:3881–3885. doi: 10.1073/pnas.75.8.3881. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Seidman J. G., Max E. E., Leder P. A kappa-immunoglobulin gene is formed by site-specific recombination without further somatic mutation. Nature. 1979;280:370–375. doi: 10.1038/280370a0. [DOI] [PubMed] [Google Scholar]
- Selsing E., Storb U. Somatic mutation of immunoglobulin lightchain variable-region genes. Cell. 1981;25:47–58. doi: 10.1016/0092-8674(81)90230-0. [DOI] [PubMed] [Google Scholar]
- Shlomchik M., Nemazee D., Van Snick J., Weigert M. Variable region sequences of murine IgM anti-IgG monoclonal autoantibodies (rheumatoid factors). II. Comparison of hybridomas derived by lipopolysaccharide stimulation and secondary protein immunization. J Exp Med. 1987;165:970–987. doi: 10.1084/jem.165.4.970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shlomchik M. J., Aucoin A. H., Pisetsky D. S., Weigert M. G. Structure and function of anti-DNA autoantibodies derived from a single autoimmune mouse. Proc Natl Acad Sci USA. 1987;84:9150–9154. doi: 10.1073/pnas.84.24.9150. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shlomchik M. J., Marshak-Rothstein A., Wolfowicz C. B., Rothstein T. L., Weigert M. G. The role of clonal selection and somatic mutation in autoimmunity. Nature. 1987;328:805–811. doi: 10.1038/328805a0. [DOI] [PubMed] [Google Scholar]
- Sikder S. K., Akolkar P. N., Kaladas P. M., Morrison S. L., Kabat E. A. Sequences of variable regions of hybridoma antibodies to alpha (1->6) dextran in BALB/c and C57BL/6 mice. J Immunol. 1985;135:4215–4221. [PubMed] [Google Scholar]
- Strohal R., Kroemer G., Wick G., Kofler R. Complete variable region sequence of a non-functionally rearranged kappa light chain transcribed in the non-secretor P3-X63-Ag8.653 myeloma cell line. Nucleic Acids Res. 1987;15:2771–2771. doi: 10.1093/nar/15.6.2771. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tonegawa S. Somatic generation of antibody diversity. Nature. 1983;302:575–581. doi: 10.1038/302575a0. [DOI] [PubMed] [Google Scholar]
- Winter E., Radbruch A., Krawinkel U. Members of novel VH gene families are found in VDJ regions of polyclonally activated B-lymphocytes. EMBO J. 1985;4:2861–2867. doi: 10.1002/j.1460-2075.1985.tb04015.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wysocki L. J., Gridley T., Huang S., Grandea A. G., Gefter M. L. Single germline VH and Vk genes encode predominating antibody variable regions elicited in strain A mice by immunization with p-azophenylarsonate. J Exp Med. 1987;166:1–11. doi: 10.1084/jem.166.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yancopoulos G. D., Desiderio S. V., Paskind M., Kearney J. F., Baltimore D., Alt F. W. Preferential utilization of the most JH-proximal VH gene segments in pre-B-cell lines. Nature. 1984;311:727–733. doi: 10.1038/311727a0. [DOI] [PubMed] [Google Scholar]
