Summary
Segmental genomes (i.e., genomes in which the genetic information is dispersed between two or more discrete molecules) are abundant in RNA viruses, but virtually absent in DNA viruses. It has been suggested that the division of information in RNA viruses expands the pool of variation available to natural selection by providing for the reassortment of modular RNAs from different genetic sources. This explanation is based on the apparent inability of related RNA molecules to undergo the kinds of physical recombination that generate variation among related DNA molecules. In this paper we propose a radically different hypothesis. Self-replicating RNA genomes have an error rate of about 10−3–10−4 substitutions per base per generation, whereas for DNA genomes the corresponding figure is 10−9–10−11. Thus the level of noise in the RNA copier process is five to eight orders of magnitude higher than that in the DNA process. Since a small module of information has a higher chance of passing undamaged through a noisy channel than does a large one, the division of RNA viral information among separate small units increases its overall chances of survival. The selective advantage of genome segmentation is most easily modelled for modular RNAs wrapped up in separate viral coats. If modular RNAs are brought together in a common viral coat, segmentation is advantageous only when interactions among the modular RNAs are selective enought to provide some degree of discrimination against miscopied sequences. This requirement is most clearly met by the reoviruses.
Key words: RNA viruses, Divided genomes, Copying fidelity, Intrinsic selection pressure
References
- Ahmed R, Fields BN. Reassortment of genome segments between reovirus defective interfering particles and infectious virus: construction of temperature sensitive and attenuated viruses by rescue of mutations from DI particles. Virology. 1981;111:351–363. doi: 10.1016/0042-6822(81)90339-1. [DOI] [PubMed] [Google Scholar]
- Bancroft JB. A virus made from parts of the genomes of brome mosaic and cowpea chlorotic mottle viruses. J Gen Virol. 1972;14:223–228. [Google Scholar]
- Both GW, Bellamy AR, Street JE, Siegman LJ. A general strategy for cloning double-stranded RNA: nucleotide sequence of the Simian-II rotavirus gene. Nucleic Acids Res. 1982;10:7075–7087. doi: 10.1093/nar/10.22.7075. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bromley PA, Barry RD. Characterisation of the RNA of fowl plague virus. Arch Gesamte Virusforsch. 1973;42:182–196. doi: 10.1007/BF01270839. [DOI] [PubMed] [Google Scholar]
- Domingo E, Sabo D, Taniguchi T, Weissman C. Nucleotide sequence heterogeneity of an RNA phage population. Cell. 1978;13:735–744. doi: 10.1016/0092-8674(78)90223-4. [DOI] [PubMed] [Google Scholar]
- Drake JW. The role of mutation in microbial evolution. Soc Gen Microbiol Symp. 1974;24:41–58. [Google Scholar]
- Eigen M, Schuster P. The hypercycle. A principle of natural self-organization. Part A: Emergence of the hypercele. Naturwissenschaften. 1977;64:541–565. doi: 10.1007/BF00450633. [DOI] [PubMed] [Google Scholar]
- Greenberg HB, Wyatt RG, Kapikian AZ, Kalica AR, Flores J, Jones R. Rescue and serotypic characterisation of noncultivable human rotavirus by gene reassortment. Infect Immun. 1982;37:104–109. doi: 10.1128/iai.37.1.104-109.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Haber S, Ikegami M, Bajet NB, Goodman RM. Evidence for a divided genome in bean golden mosaic virus, a geminivirus. Nature. 1981;289:324–326. doi: 10.1038/289324a0. [DOI] [Google Scholar]
- Habili N, Francki RIB. Comparative studies on tomato aspermy and cucumber mosaic viruses. III. Further studies on the relationship and construction of a virus from parts of the two viral genomes. Virology. 1974;61:443–449. doi: 10.1016/0042-6822(74)90280-3. [DOI] [PubMed] [Google Scholar]
- Holland J, Spindler K, Horodyski F, Grabau E, Nichol S, Vande Pol S. Rapid evolution of RNA genomes. Science. 1982;215:1577–1585. doi: 10.1126/science.7041255. [DOI] [PubMed] [Google Scholar]
- Inoue T, Orgel LE. A non-enzymatic RNA polymerase model. Science. 1983;219:859–862. doi: 10.1126/science.6186026. [DOI] [PubMed] [Google Scholar]
- Jaspers EMJ. Plant viruses with a multipartite genome. Adv Virus Res. 1974;19:37–149. doi: 10.1016/s0065-3527(08)60659-4. [DOI] [PubMed] [Google Scholar]
- Joklik W. Evolution in viruses. Soc Gen Microbiol. 1974;42:293–320. [Google Scholar]
- Joklik W. Structure and function of the reovirus genome. Microbiol Rev. 1981;45:483–501. doi: 10.1128/mr.45.4.483-501.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kornberg A. DNA replication. San Francisco: WH Freeman and Co; 1980. pp. 724–724. [Google Scholar]
- Lane LC. The RNAs of multipartite and satellite viruses of plants. In: Hall TC, Davies JW, editors. Nucleic acids in plants. Boca Raton: CRC Press; 1979. pp. 65–110. [Google Scholar]
- Loeb AA, Kunkel TA. Fidelity of DNA synthesis. Annu Rev Biochem. 1982;51:429–457. doi: 10.1146/annurev.bi.51.070182.002241. [DOI] [PubMed] [Google Scholar]
- Matthews REF. Classification and nomenclature of viruses. Intervirology. 1979;12:129–296. doi: 10.1159/000149081. [DOI] [PubMed] [Google Scholar]
- Maynard-Smith J. The evolution of sex. Cambridge, England: Cambridge University Press; 1978. [Google Scholar]
- Min Jou W, Haegeman G, Ysebaert M, Fiers W. Nucleotide sequences of the gene coding for the bacteriophage MS2 coat protein. Nature. 1972;237:82–88. doi: 10.1038/237082a0. [DOI] [PubMed] [Google Scholar]
- Nahmias AJ, Reanney DC. The evolution of viruses. Annu Rev Ecol Systematics. 1977;8:29–49. doi: 10.1146/annurev.es.08.110177.000333. [DOI] [Google Scholar]
- Palese P, Schulman JL. Differences in RNA patterns of influenza A viruses. J Virol. 1976;17:876–884. doi: 10.1128/jvi.17.3.876-884.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Palese P, Young JF. Variation of influenza A, B and C viruses. Science. 1982;215:1468–1473. doi: 10.1126/science.7038875. [DOI] [PubMed] [Google Scholar]
- Portner A, Webster RG, Bean WJ. Similar frequencies of antigenic variants in Sendai, vesicular stomatitis and influenza A viruses. Virology. 1980;104:235–238. doi: 10.1016/0042-6822(80)90382-7. [DOI] [PubMed] [Google Scholar]
- Prabhakar BS, Haspel MV, McClintock PR, Notkins AL. High frequency of antigenic variants among naturally occurring human Coxsackie B4 virus isolates identified by monoclonal antibodies. Nature. 1982;300:374–376. doi: 10.1038/300374a0. [DOI] [PubMed] [Google Scholar]
- Reanney DC. The evolution of RNA viruses. Annu Rev Microbiol. 1982;36:47–73. doi: 10.1146/annurev.mi.36.100182.000403. [DOI] [PubMed] [Google Scholar]
- Reanney DC, Pressing J (1983) Heat as a determinative factor in the evolution of genetic systems. J Mol Evol, submitted [DOI] [PubMed]
- Reanney DC. Genetic noise in evolution? Nature. 1984;307:318–319. doi: 10.1038/307318a0. [DOI] [PubMed] [Google Scholar]
- Reanney DC. The molecular evolution of RNA viruses. Soc Gen Microbiol Symp. 1984;35:175–196. [Google Scholar]
- Reijnders L. The origin of multicomponent small ribonucleoprotein viruses. Adv Virus Res. 1978;23:79–102. doi: 10.1016/s0065-3527(08)60098-6. [DOI] [PubMed] [Google Scholar]
- Rogers J, Wall R. A mechanism for RNA splicing. Proc Natl Acad Sci USA. 1980;77:1877–1879. doi: 10.1073/pnas.77.4.1877. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rose M, Doolittle WF. Parasitic DNA—the origin of species and sex. New Scientist. 1983;16:787–789. [Google Scholar]
- Shannon CE. The mathematical theory of communication. In: Shannon CE, Weaver W, editors. The mathematical theory of communication. Urbana, Illinois: University of Illinois Press; 1949. [Google Scholar]
- Shatkin AJ, Sipe JD, Loh P. Separation of ten reovirus genome segments by polyacrylamide gel electrophoresis. J Virol. 1968;2:986–991. doi: 10.1128/jvi.2.10.986-991.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Silverstein SC, Christman JK, Acs G. The reovirus replicative cycle. Annu Rev Biochem. 1976;45:375–408. doi: 10.1146/annurev.bi.45.070176.002111. [DOI] [PubMed] [Google Scholar]
- Tinoco I, Uhlenbeck O, Levine M. Estimation of secondary structure in ribonucleic acids. Nature. 1971;230:362–367. doi: 10.1038/230362a0. [DOI] [PubMed] [Google Scholar]
- Webster RB, Granoff A. The evolution of orthomyxoviruses. In: Kurstak E, Maramorosch K, editors. Viruses, evolution and cancer. New York: Academic Press; 1974. pp. 625–647. [Google Scholar]