Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 2018 Jan 3;82(13):1615–1631. doi: 10.1134/S0006297917130041

Enteroviruses: Classification, diseases they cause, and approaches to development of antiviral drugs

O S Nikonov 1, E S Chernykh 1, M B Garber 1, E Yu Nikonova 1,
PMCID: PMC7087576  PMID: 29523062

Abstract

The genus Enterovirus combines a portion of small (+)ssRNA-containing viruses and is divided into 10 species of true enteroviruses and three species of rhinoviruses. These viruses are causative agents of the widest spectrum of severe and deadly epidemic diseases of higher vertebrates, including humans. Their ubiquitous distribution and high pathogenici- ty motivate active search to counteract enterovirus infections. There are no sufficiently effective drugs targeted against enteroviral diseases, thus treatment is reduced to supportive and symptomatic measures. This makes it extremely urgent to develop drugs that directly affect enteroviruses and hinder their development and spread in infected organisms. In this review, we cover the classification of enteroviruses, mention the most common enterovirus infections and their clinical man- ifestations, and consider the current state of development of anti-enteroviral drugs. One of the most promising targets for such antiviral drugs is the viral Internal Ribosome Entry Site (IRES). The classification of these elements of the viral mRNA translation system is also examined.

Keywords: IRES, enteroviruses, Picornaviridae, translation initiation, drug design, taxonomy

Abbreviations

IRES

internal ribosomal entry sites

ITAF

IRES trans-acting factors

Footnotes

Original Russian Text © O. S. Nikonov, E. S. Chernykh, M. B. Garber, E. Yu. Nikonova, 2017, published in Uspekhi Biologicheskoi Khimii, 2017, Vol. 57, pp. 119-152.

References

  • 1.Pelletier J., Sonenberg N. Internal initiation of translation of eukaryotic mRNA directed by a sequence derived from poliovirus RNA. Nature. 1988;334:320–325. doi: 10.1038/334320a0. [DOI] [PubMed] [Google Scholar]
  • 2.Jang S. K., Krausslich H. G., Nicklin M. J., Duke G. M., Palmenberg A. C., Wimmer E. A segment of the 5'-nontranslated region of encephalomyocarditis virus RNA directs internal entry of ribosomes during in vitro translation. J. Virol. 1988;62:2636–2643. doi: 10.1128/jvi.62.8.2636-2643.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Skulachev M. V. Internal translation initiation: diversity of mechanisms and possible role in cell life. Usp. Biol. Khim. 2005;45:123–172. [Google Scholar]
  • 4.Komar A. A., Hatzoglou M. Internal ribosome entry sites in cellular mRNAs: mystery of their existence. J. Biol. Chem. 2005;280:23425–23428. doi: 10.1074/jbc.R400041200. [DOI] [PubMed] [Google Scholar]
  • 5.Komar A. A., Hatzoglou M. Cellular IRES-mediated translation: the war of ITAFs in pathophysiological states. Cell Cycle. 2011;10:229–240. doi: 10.4161/cc.10.2.14472. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Niepmann M. Internal translation initiation of picornaviruses and hepatitis C virus. Biochim. Biophys. Acta. 2009;1789:529–541. doi: 10.1016/j.bbagrm.2009.05.002. [DOI] [PubMed] [Google Scholar]
  • 7.Balvay L., Soto-Rifo R., Ricci E. P., Decimo D., Ohlmann T. Structural and functional diversity of viral IRESes. Biochim. Biophys. Acta. 2009;1789:542–557. doi: 10.1016/j.bbagrm.2009.07.005. [DOI] [PubMed] [Google Scholar]
  • 8.Tahiri-Alaoui A., Smith L. P., Baigent S. Identification of an intercistronic internal ribosome entry site in a Marek’s disease virus immediate-early gene. J. Virol. 2009;83:5846–5853. doi: 10.1128/JVI.02602-08. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Wilson J. E. Naturally occurring dicistronic cricket paralysis virus RNA is regulated by two internal ribosome entry sites. Mol. Cell Biol. 2000;20:4990–4999. doi: 10.1128/MCB.20.14.4990-4999.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Wong S. M., Koh D. C., Liu D. Identification of plant virus IRES. Methods Mol. Biol. 2008;451:125–133. doi: 10.1007/978-1-59745-102-4_9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Ronfort C., De Breyne S., Sandrin V., Darlix J. L., Ohlmann T. Characterization of two distinct RNA domains that regulate translation of the Drosophila gypsy retroelement. RNA. 2004;10:504–515. doi: 10.1261/rna.5185604. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.De Breyne S., Yu Y., Unbehaun A., Pestova T. V., Hellen C. Direct functional interaction of initiation factor eIF4G with type 1 internal ribosomal entry sites. Proc. Natl. Acad. Sci. USA. 2009;106:9197–9202. doi: 10.1073/pnas.0900153106. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Jackson R. J., Hellen C. U., Pestova T. V. The mechanism of eukaryotic translation initiation and principles of its regulation. Nat. Rev. Mol. Cell Biol. 2010;11:113–127. doi: 10.1038/nrm2838. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Hellen C. U. IRES-induced conformational changes in the ribosome and the mechanism of translation initiation by internal ribosomal entry. Biochim. Biophys. Acta. 2009;1789:558–570. doi: 10.1016/j.bbagrm.2009.06.001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Pisarev A. V., Shirokikh N. E., Hellen C. U. T. Translation initiation by factor-independent binding of eukaryotic ribosomes to internal ribosomal entry sites. C. R. Biol. 2005;328:589–605. doi: 10.1016/j.crvi.2005.02.004. [DOI] [PubMed] [Google Scholar]
  • 16.Shatsky I. N., Dmitriev S. E., Terenin I. M., Andreev D. E. Cap-and IRES-independent scanning mechanism of translation initiation as an alternative to the concept of cellular IRESs. Mol. Cells. 2010;30:285–293. doi: 10.1007/s10059-010-0149-1. [DOI] [PubMed] [Google Scholar]
  • 17.Dorokhov Y. L., Skulachev M. V., Ivanov P. A., Zvereva S. D., Tjulkina L. G., Merits A., Gleba Y. Y., Hohn T., Atabekov J. G. Polypurine (A)-rich sequences promote cross-kingdom conservation of internal ribosome entry. Proc. Natl. Acad. Sci. USA. 2002;99:5301–5306. doi: 10.1073/pnas.082107599. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Dorokhov Yu. L., Ivanov P. A., Novikov V. K., Agranovsky A. A., Morozov S. Yu., Efimov V. A., Casper R., Atabekov J. G. Complete nucleotide sequence and genome organization of a tobamovirus infecting Cruciferae plants. FEBS Lett. 1994;350:5–8. doi: 10.1016/0014-5793(94)00721-7. [DOI] [PubMed] [Google Scholar]
  • 19.Belsham G. J., Jackson R. J. Translation initiation on picornavirus RNA. In: Sonenberg N., Hershey J. W. B., Mathews M. B., editors. Translational Control of Gene Expression. 2000. pp. 869–900. [Google Scholar]
  • 20.Jang S. K., Pestova T. V., Hellen C. U. T., Witherell G. W., Wimmer E. Cap-independent translation of picornavirus RNAs: structure and function of the internal ribosomal entry site. Enzyme. 1990;44:292–309. doi: 10.1159/000468766. [DOI] [PubMed] [Google Scholar]
  • 21.Willcocks M. M. Structural features of the Seneca Valley virus internal ribosome entry site element; a picornavirus with a pestivirus-like IRES. J. Virol. 2011;85:4452–4461. doi: 10.1128/JVI.01107-10. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Pestova T. V., Hellen C. U., Wimmer E. Translation of poliovirus RNA: role of an essential cis-acting oligopyrimidine element within the 5'-nontranslated region and involvement of a cellular 57-kilodalton protein. J. Virol. 1991;65:6194–6204. doi: 10.1128/jvi.65.11.6194-6204.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Pestova T. V., Hellen C. U., Wimmer E. A conserved AUG triplet in the 5'-nontranslated region of poliovirus can function as an initiation codon in vitro and in vivo. Virology. 1994;204:729–737. doi: 10.1006/viro.1994.1588. [DOI] [PubMed] [Google Scholar]
  • 24.Bailey J. M., Tapprich W. E. Structure of the 5'-nontranslated region of the coxsackievirus b3 genome: chemical modification and comparative sequence analysis. J. Virol. 2007;81:650–668. doi: 10.1128/JVI.01327-06. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Pestova T. V., Hellen C. U., Shatsky I. N. Canonical eukaryotic initiation factors determine initiation of translation by internal ribosomal entry. Mol. Cell. Biol. 1996;16:6859–6869. doi: 10.1128/MCB.16.12.6859. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Pilipenko E. V., Pestova T. V., Kolupaeva V. G., Khitrina E. V., Poperechnaya A. N., Agol V. I., Hellen C. U. A cell cycle-dependent protein serves as a template-specific translation initiation factor. Genes Dev. 2000;14:2028–2045. [PMC free article] [PubMed] [Google Scholar]
  • 27.Brown E. A., Zajac A. J., Lemon S. M. In vitro characterization of an internal ribosomal entry site (IRES) present within the 5'-nontranslated region of hepatitis A virus RNA: comparison with the IRES of encephalomyocarditis virus. J. Virol. 1994;68:1066–1074. doi: 10.1128/jvi.68.2.1066-1074.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Ali I. K., McKendrick L., Morley S. J., Jackson R. J. Activity of the hepatitis A virus IRES requires association between the cap-binding translation initiation factor (eIF4E) and eIF4G. J. Virol. 2001;75:7854–7863. doi: 10.1128/JVI.75.17.7854-7863.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.De Breyne S., Yu Y., Pestova T. V., Hellen C. U. Factor requirements for translation initiation on the simian picornavirus internal ribosomal entry site. RNA. 2008;14:367–380. doi: 10.1261/rna.696508. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Pestova T. V., Borukhov S. I., Hellen C. U. Eukaryotic ribosomes require 872 initiation factors 1 and 1A to locate initiation codons. Nature. 1998;394:854–859. doi: 10.1038/29703. [DOI] [PubMed] [Google Scholar]
  • 31.Pestova T. V., De Breyne S., Pisarev A. V., Abaeva I. S., Hellen C. U. T. eIF2-dependent and eIF2-independent modes of initiation on the CSFV IRES: a common 875 role of domain II. EMBO J. 2008;27:1060–1072. doi: 10.1038/emboj.2008.49. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.Kafasla P., Morgner N., Robinson C. V., Jackson R. J. Polypyrimidine tract-binding protein stimulates the poliovirus IRES by modulating eIF4G binding. EMBO J. 2010;29:3710–3722. doi: 10.1038/emboj.2010.231. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33.Kaminski A., Hunt S. L., Gibbs C. L., Jackson R. J. Internal initiation of mRNA translation in eukaryote. In: Setlow J. K., editor. Genetic Engineering. 1994. pp. 115–155. [PubMed] [Google Scholar]
  • 34.Wilson J. E., Pestova T. V., Hellen C. U. T., Sarnow P. Initiation of protein synthesis from the A site of the ribosome. Cell. 2000;102:511–520. doi: 10.1016/S0092-8674(00)00055-6. [DOI] [PubMed] [Google Scholar]
  • 35.King A. M. Q., Adams M. J., Carstens E. B., Lefkowitz E. J. Virus Taxonomy: Classification and Nomenclature of Viruses: Ninth Report of the International Committee on Taxonomy of Viruses. San Diego: Elsevier Academic Press; 2012. [Google Scholar]
  • 36.Adams M. J., King A. M. Q., Carstens E. B. Ratification vote on taxonomic proposals to the International Committee on Taxonomy of Viruses. Arch. Virol. 2013;158:2023–2030. doi: 10.1007/s00705-013-1688-5. [DOI] [PubMed] [Google Scholar]
  • 37.Adams M. J., Lefkowitz E. J., King A. M. Q., Carstens E. B. Ratification vote on taxonomic proposals to the International Committee on Taxonomy of Viruses. Arch. Virol. 2014;159:2831–2841. doi: 10.1007/s00705-014-2114-3. [DOI] [PubMed] [Google Scholar]
  • 38.Adams M. J., Lefkowitz E. J., King A. M. Q., Bamford D. H., Breitbart M., Davison A. J., Ghabrial S. A., Gorbalenya A. E., Knowles N. J., Krell P., Lavigne R., Prangishvili D., Sanfaçon H., Siddell S. G., Simmonds P., Carstens E. B. Ratification vote on taxonomic proposals to the International Committee on Taxonomy of Viruses. Arch. Virol. 2015;160:1837–1850. doi: 10.1007/s00705-015-2425-z. [DOI] [PubMed] [Google Scholar]
  • 39.Adams M. J., Lefkowitz E. J., King A. M. Q., Harrach B., Harrison R. L., Knowles N. J., Kropinski A. M., Krupovic M., Kuhn J. H., Mushegian A. R., Nibert M., Sabanadzovic S., Sanfacon H., Siddell S. G., Simmonds P., Varsani A., Zerbini F. M., Gorbalenya A. E., Davison A. J. Ratification vote on taxonomic proposals to the International Committee on Taxonomy of Viruses. Arch. Virol. 2016;161:2921–2949. doi: 10.1007/s00705-016-2977-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 40.Arden K. E., McErlean P., Nissen M. D., Sloots T. P., Mackay I. M. Frequent detection of human rhinoviruses, paramyxoviruses, coronaviruses, and bocavirus during acute respiratory tract infections. J. Med. Virol. 2006;78:1232–1240. doi: 10.1002/jmv.20689. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41.McErlean P., Shackelton L. A., Lambert S. B., Nissen M. D., Sloots T. P., Mackay I. M. Characterization of a newly identified human rhinovirus, HRV-QPM, discovered in infants with bronchiolitis. J. Clin. Virol. 2007;39:67–75. doi: 10.1016/j.jcv.2007.03.012. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42.Lamson D., Renwick N., Kapoor V., Liu Z., Palacios G., Ju J., Dean A., St George K., Briese T., Lipkin W. I. MassTag polymerase-chain-reaction detection of respiratory pathogens, including a new rhinovirus genotype, that caused influenza-like illness in New York State during 2004-2005. J. Infect. Dis. 2006;194:1398–1402. doi: 10.1086/508551. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 43.Lau S. K., Yip C. C., Tsoi H. W., Lee R. A., So L. Y., Lau Y. L., Chan K. H., Woo P. C., Yuen K. Y. Clinical features and complete genome characterization of a distinct human rhinovirus genetic cluster, probably representing a previously undetected HRV species, HRV-C, associated with acute respiratory illness in children. J. Clin. Microbiol. 2007;45:3655–3664. doi: 10.1128/JCM.01254-07. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 44.Lee W.-M., Kiesner C., Pappas T., Lee I., Grindle K., Jartti T., Jakiela B., Lemanske R. F. Jr., Shult P. A., Gern J. E. A diverse group of previously unrecognized human rhinoviruses are common causes of respiratory illnesses in infants. PLoS One. 2007;2:e966. doi: 10.1371/journal.pone.0000966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 45.McErlean P., Shackelton L. A., Andrews E., Webster D. R., Lambert S. B., Nissen M. D., Sloots T. P., Mackay I. M. Distinguishing molecular features and clinical characteristics of a putative new rhinovirus species, Human rhinovirus C (HRV C) PLoS One. 2008;3:e1847. doi: 10.1371/journal.pone.0001847. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 46.Kistler A., Avila P. C., Rouskin S., Wang D., Ward T., Yagi S., Schnurr D., Ganem D., DeRisi J. L., Boushey H. A. Pan-viral screening of respiratory tract infections in adults with and without asthma reveals unexpected human coronavirus and human rhinovirus diversity. J. Infect. Dis. 2007;196:817–825. doi: 10.1086/520816. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 47.McIntyre C. L., Knowles N. J., Simmonds P. Proposals for the classification of human rhinovirus species A, B and C into genotypically assigned types. J. Gen. Virol. 2013;94:1791–1806. doi: 10.1099/vir.0.053686-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 48.Simmonds P., McIntyre C. L., Savolainen-Kopra C., Tapparel C., Mackay I. M., Hovi T. Proposals for the classification of human rhinovirus species C into genotypically-assigned types. J. Gen. Virol. 2010;91:2409–2419. doi: 10.1099/vir.0.023994-0. [DOI] [PubMed] [Google Scholar]
  • 49.Galassi F. M., Habicht M. E., Ruhli F. J. Poliomyelitis in Ancient Egypt. Neurol. Sci. 2017;38:375. doi: 10.1007/s10072-016-2720-9. [DOI] [PubMed] [Google Scholar]
  • 50.Horstmann D. M., Yale J. The poliomyelitis story: a scientific hegira. Biol. Med. 1985;58:79–90. [PMC free article] [PubMed] [Google Scholar]
  • 51.De Jesus N. H. Epidemics to eradication: the modern history of poliomyelitis. Virol. J. 2007;4:70. doi: 10.1186/1743-422X-4-70. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 52.Ritchie W., Russell B. Paralytic poliomyelitis. Med. J. 1949;1:465–471. doi: 10.1136/bmj.1.4602.465. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 53.Kidd D., Williams A. J., Howard R. S. Poliomyelitis. Postgrad. Med. J. 1996;72:641–647. doi: 10.1136/pgmj.72.853.641. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 54.Reznik B. I., Kurakina L. T. A pontine form of poliomyelitis and isolated facial neuritis. Sov. Med. 1961;25:87–91. [PubMed] [Google Scholar]
  • 55.Matzke H. A., Baker A. B. Poliomyelitis. V. The pons. AMA Neurol. Psychiatry. 1952;68:1–15. [PubMed] [Google Scholar]
  • 56.Noran H. H. Poliomyelitis. The bulbar type. Minn. Med. 1968;51:1249–1252. [PubMed] [Google Scholar]
  • 57.Schaefer J., Edward B. Poliomyelitis in pregnancy. Calif. Med. 1949;70:16–18. [PMC free article] [PubMed] [Google Scholar]
  • 58.Global Polio Eradication Initiative. Wild Poliovirus Weekly Update. Sept 8, 2009. Available at http://www. polioeradication.org/casecount.asp.
  • 59.WHO Poliomyelitis. Online at: http://www.who.int/topics/ poliomyelitis/en/. Accessed 11 Aug 2016. Accessed 11 Aug 2016.
  • 60.Norway T. M. The occurrence of Bamble disease (epidemic pleurodynia) Vogelsang Med. Hist. 1967;11:86–90. doi: 10.1017/S0025727300011765. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 61.Leendertse M., Van Vugt M., Benschop K. S., Van Dijk K., Minnaar R. P., Van Eijk H. W., Hodiamont C. J., Wolthers K. C. Pleurodynia caused by an echovirus 1 brought back from the tropics. J. Clin. Virol. 2013;58:490–493. doi: 10.1016/j.jcv.2013.06.039. [DOI] [PubMed] [Google Scholar]
  • 62.Gaaloul I., Riabi S., Harrath R., Hunter T., Hamda K. B., Ghzala A. B., Huber S., Aouni M. Coxsackievirus B detection in cases of myocarditis, myopericarditis, pericarditis and dilated cardiomyopathy in hospitalized patients. Mol. Med. Rep. 2014;10:2811–2818. doi: 10.3892/mmr.2014.2578. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 63.Novikov Iu. I., Stulova M. A., Lavrova I. K. Myocarditis caused by coxsackie B viruses in adults. Ter. Arkh. 1984;56:37–43. [PubMed] [Google Scholar]
  • 64.Lee W. S., Lee K. J., Kwon J. E., Oh M. S., Kim J. E., Cho E. J., Kim C. J. Acute viral myopericarditis presenting as a transient effusive-constrictive pericarditis caused by coinfection with coxsackieviruses A4 and B3. Korean J. Intern. Med. 2012;27:216–220. doi: 10.3904/kjim.2012.27.2.216. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 65.Shanmugam J., Raveendranath M., Balakrishnan K. G. Isolation of ECHO virus type-22 from a child with acute myopericarditis–a case report. Indian Heart J. 1986;38:79–80. [PubMed] [Google Scholar]
  • 66.Fukuhara T., Kinoshita M., Bito K., Sawamura M., Motomura M., Kawakita S., Kawanishi K. Myopericarditis associated with ECHO virus type 3 infection–a case report. Jpn. Circ. J. 1983;47:1274–1280. doi: 10.1253/jcj.47.1274. [DOI] [PubMed] [Google Scholar]
  • 67.Liapounova N. A., Mouquet F., Ennezat P. V. Acute myocardial infarction spurred by myopericarditis in a young female patient: coxsackie B2 to blame. Acta Cardiol. 2011;66:79–81. doi: 10.1080/AC.66.1.2064971. [DOI] [PubMed] [Google Scholar]
  • 68.Chatterjee S., Quarcoopome C. O., Apenteng A. Unusual type of epidemic conjunctivitis in Ghana. Br. J. Ophthalmol. 1970;54:628–630. doi: 10.1136/bjo.54.9.628. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 69.Lim K. H., Yin-Murphy M. An epidemic of conjunctivitis in Singapore in 1970. Singapore Med. J. 1971;12:247–249. [PubMed] [Google Scholar]
  • 70.Wright P. W., Strauss G. H., Langford M. P. Acute hemorrhagic conjunctivitis. Am. Fam. Physician. 1992;45:173–178. [PubMed] [Google Scholar]
  • 71.Langford M. P., Anders E. A., Burch M. A. Acute hemorrhagic conjunctivitis: anti-coxsackievirus A24 variant secretory immunoglobulin A in acute and convalescent tear. Clin. Ophthalmol. 2015;10:1665–1663. doi: 10.2147/OPTH.S85358. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 72.Kogon A., Spigland I., Frothingham T. E., Elveback L., Williams C., Hall C. E. The virus watch program: a continuing surveillance of viral infections in metropolitan New York families. VII. Observations on viral excretion, seroimmunity, intrafamilial spread and illness association in coxsackie and echovirus infections. Am. J. Epidemiol. 1969;89:51–61. doi: 10.1093/oxfordjournals.aje.a120915. [DOI] [PubMed] [Google Scholar]
  • 73.Simasek M., Blandino D. A. Treatment of the common cold. Am. Fam. Physician. 2007;75:515–520. [PubMed] [Google Scholar]
  • 74.Jacobson L. M., Redd J. T., Schneider E., Lu X., Chern S. W., Oberste M. S., Erdman D. D., Fischer G. E., Armstrong G. L., Kodani M., Montoya J., Magri J. M., Cheek J. E. Outbreak of lower respiratory tract illness associated with human enterovirus 68 among American Indian children. Pediatr. Infect. Dis. J. 2012;31:309–312. doi: 10.1097/INF.0b013e3182443eaf. [DOI] [PubMed] [Google Scholar]
  • 75.Rotbart H. A. Enteroviral infections of the central nervous system. Clin. Infect. Dis. 1995;20:971–981. doi: 10.1093/clinids/20.4.971. [DOI] [PubMed] [Google Scholar]
  • 76.Lee B. E., Davies H. D. Aseptic meningitis. Curr. Opin. Infect. Dis. 2007;20:272–277. doi: 10.1097/QCO.0b013e3280ad4672. [DOI] [PubMed] [Google Scholar]
  • 77.Cui A., Yu D., Zhu Z., Meng L., Li H., Liu J., Liu G., Mao N., Xu W. An outbreak of aseptic meningitis caused by coxsackievirus A9 in Gansu, the People’s Republic of China. Virol. J. 2010;7:72. doi: 10.1186/1743-422X-7-72. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 78.Irani D. N. Aseptic meningitis and viral myelitis. Neurol. Clin. 2008;26:635. doi: 10.1016/j.ncl.2008.03.003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 79.Huang C. C., Liu C. C., Chang Y. C., Chen C. Y., Wang S. T., Yeh T. F. Neurologic complications in children with enterovirus 71 infection. N. Engl. J. Med. 1999;341:936–942. doi: 10.1056/NEJM199909233411302. [DOI] [PubMed] [Google Scholar]
  • 80.Lukashev A. N., Koroleva G. A., Lashkevich V. A., Mikhailov M. I. Enterovirus 71: epidemiology and diagnostics. J. Microbiol. Epidemiol. Immunobiol. 2009;3:110–116. [PubMed] [Google Scholar]
  • 81.Jubelt B., Lipton H. L. Enterovirus/picornavirus infections. Handb. Clin. Neurol. 2014;123:379–416. doi: 10.1016/B978-0-444-53488-0.00018-3. [DOI] [PubMed] [Google Scholar]
  • 82.Chang L.-Y. K. Ch.-Ch., Hsu K.-H. N. H.-Ch. T. K.-Ch. L. Ch.-Ch. H. Yh.-Ch., Shih S.-R., Chiou S.-T., Chen P.-Y., Chang H.-J., Lin T. Y. Risk factors of enterovirus 71 infection and associated hand, foot, and mouth disease/herpangina in children during an epidemic in Taiwan. Pediatrics. 2002;109:e88. doi: 10.1542/peds.109.6.e88. [DOI] [PubMed] [Google Scholar]
  • 83.Laga A. C., Shroba S. M., Hanna J. A typical hand, foot and mouth disease in adults associated with coxsackievirus A6: a clinicopathologic study. J. Cutan. Pathol. 2016;43:940–945. doi: 10.1111/cup.12775. [DOI] [PubMed] [Google Scholar]
  • 84.Chiu W. Y., Lo Y. H., Yeh T. C. Coxsackievirus associated hand, foot and mouth disease in an adult. QJM. 2016;109:823–824. doi: 10.1093/qjmed/hcw154. [DOI] [PubMed] [Google Scholar]
  • 85.Lee K. Y. Enterovirus 71 infection and neurological complications. Korean J. Pediatr. 2016;59:395–401. doi: 10.3345/kjp.2016.59.10.395. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 86.Fowlkes A. L., Honarmand S., Glaser C., Yagi S., Schnurr D., Oberste M. S., Anderson L., Pallansch M. A., Khetsuriani N. J. Enterovirus-associated encephalitis in the California encephalitis project, 1998-2005. Infect. Dis. 2008;198:1685–1691. doi: 10.1086/592988. [DOI] [PubMed] [Google Scholar]
  • 87.Zhang L., Yan J., Ojcius D. M., Lv H., Miao Z., Chen Y., Zhang Y., Yan J. Novel and predominant pathogen responsible for the enterovirus-associated encephalitis in eastern China. PLoS One. 2013;8:e85023. doi: 10.1371/journal.pone.0085023. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 88.Gusev E. A., Burd G. S., Konovalov A. N. Neurology and Neurosurgery. 2000. p. 656. [Google Scholar]
  • 89.Zuckerman M. A., Sheaff M., Martin J. E., Gabriel C. M. Fatal case of echovirus type 9 encephalitis. J. Clin. Pathol. 1993;46:865–866. doi: 10.1136/jcp.46.9.865. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 90.Wang S. M., Liu C. C. Enterovirus 71: epidemiology, pathogenesis and management. Expert Rev. Anti-Infect. Ther. 2009;7:735–742. doi: 10.1586/eri.09.45. [DOI] [PubMed] [Google Scholar]
  • 91.Skripachenkom N. V., Sorokina M. N., Ivanova V. V., Komantsev V. N. Acute flaccid paralyses in children under modern conditions. Ross. Vestn. Perinatol. Pediatr. 1999;3:31–35. [Google Scholar]
  • 92.Tang J., Yoshida H., Ding Z., Tao Z., Zhang J., Tian B., Zhao Z., Zhang L. Molecular epidemiology and recombination of human enteroviruses from AFP surveillance in Yunnan. China from 2006 to 2010, Sci. Rep. 2014;14:6058. doi: 10.1038/srep06058. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 93.Ong K. C., Wong K. T. Understanding enterovirus 71 neuropathogenesis and its impact on other neurotropic enteroviruses. Brain Pathol. 2015;25:614–624. doi: 10.1111/bpa.12279. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 94.Perez-Velez C. M., Anderson M. S., Robinson C. C., McFarland E. J., Nix W. A., Pallansch M. A., Oberste M. S., Glode M. P. Outbreak of neurologic enterovirus type 71 disease: a diagnostic challenge. Clin. Infect. Dis. 2007;45:950–957. doi: 10.1086/521895. [DOI] [PubMed] [Google Scholar]
  • 95.Landry M. L., Fonseca S. N., Cohen S., Bogue C. W. Fatal enterovirus type 71 infection: rapid detection and diagnostic pitfalls. Pediatr. Infect. Dis. J. 1995;14:1095–100. doi: 10.1097/00006454-199512000-00013. [DOI] [PubMed] [Google Scholar]
  • 96.Aliev A. S., Alieva A. K. Poultry gastrointestinal diseases of viral etiology. Poult. Chicken Products. 2009;4:50–54. [Google Scholar]
  • 97.Mitchell D., Corner A. H., Bannister G. L., Greig A. S. Studies on pathogenic porcine enteroviruses: 1. Preliminary investigations. Can. J. Compar. Med. Vet. Sci. 1961;25:85–93. [PMC free article] [PubMed] [Google Scholar]
  • 98.Nollens H. H., Rivera R., Palacios G., Wellehan J. F., Saliki J. T., Caseltine S. L., Smith C. R., Jensen E. D., Hui J., Lipkin W. I., Yochem P. K., Wells R. S., St. Leger J., Venn-Watson S. Short communication: New recognition of enterovirus infections in bottlenose dolphins (Tursiops truncatus) Vet. Microbiol. 2009;139:170–175. doi: 10.1016/j.vetmic.2009.05.010. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 99.Abzug M. J., Michaels M. G., Wald E., Jacobs R. F., Romero J. R., Sanchez P. J., Wilson G., Krogstad P., Storch G. A., Lawrence R., Shelton M., Palmer A., Robinson J., Dennehy P., Sood S. K., Cloud G., Jester P., Acosta E. P., Whitley R., Kimberlin D. Controlled trial of pleconaril for the treatment of neonates with enterovirus sepsis. National institute of allergy and infectious diseases collaborative antiviral study group. J. Pediatric Infect. Dis. Soc. 2016;5:53–62. doi: 10.1093/jpids/piv015. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 100.Pevear D. C., Tull T. M., Seipel M. E., Groarke J. M. Activity of pleconaril against enteroviruses. Antimicrob. Agents Chemother. 1999;43:2109–2115. doi: 10.1128/aac.43.9.2109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 101.Hayden F. G., Herrington D. T., Coats T. L., Kim K., Cooper E. C., Villano S. A., Liu S., Hudson S., Pevear D. C., Collett M., McKinlay M. Efficacy and safety of oral pleconaril for treatment of colds due to picornaviruses in adults: results of 2 double-blind, randomized, placebo-controlled trials. Clin. Infect. Dis. 2003;36:1523–1532. doi: 10.1086/375069. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 102.Shia K. S., Li W. T., Chang C. M., Hsu M. C., Chern J. H., Leong M. K., Tseng S. N., Lee C. C., Lee Y. C., Chen S. J., Peng K. C., Tseng H. Y., Chang Y. L., Tai C. L., Shih S. R. Design, synthesis, and structure-activity relationship of pyridyl imidazolidinones: a novel class of potent and selective human enterovirus 71 inhibitors. J. Med. Chem. 2002;45:1644–1655. doi: 10.1021/jm010536a. [DOI] [PubMed] [Google Scholar]
  • 103.Laconi S., Madeddu M. A., Pompei R. Study of the biological activity of novel synthetic compounds with antiviral properties against human rhinoviruses. Molecules. 2011;16:3479–3487. doi: 10.3390/molecules16053479. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 104.Gradi A., Svitkin Y. V., Imataka H., Sonenberg N. Proteolysis of human eukaryotic translation initiation factor eIF4GII, but not eIF4GI, coincides with the shutoff of host protein synthesis after poliovirus infection. Proc. Natl. Acad. Sci. USA. 1998;95:11089–11094. doi: 10.1073/pnas.95.19.11089. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 105.Park N., Katikaneni P., Skern T., Gustin K. E. J. Differential targeting of nuclear pore complex proteins in poliovirus-infected cells. Virology. 2008;82:1647–1655. doi: 10.1128/JVI.01670-07. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 106.Almstead L. L., Sarnow P. Inhibition of U snRNP assembly by a virus-encoded proteinase. Genes Dev. 2007;21:1086–1089. doi: 10.1101/gad.1535607. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 107.Zhou H., Sun Y., Guo Y., Lou Z. Structural perspective on the formation of ribonucleoprotein complex in negative-sense single stranded RNA viruses. Trends Microbiol. 2013;21:475–484. doi: 10.1016/j.tim.2013.07.006. [DOI] [PubMed] [Google Scholar]
  • 108.Tan J., George S., Kusov Y., Perbandt M., Anemuller S., Mesters J. R., Norder H., Coutard B., Lacroix C., Leyssen P., Neyts J., Hilgenfeld R. 3C protease of enterovirus 68: structure-based design of Michael acceptor inhibitors and their broad-spectrum antiviral effects against picornaviruses. J. Virol. 2013;87:4339–4351. doi: 10.1128/JVI.01123-12. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 109.Racaniello, V. R. (2007) Picornaviridae: The Viruses and Their Replication (Knipe, D. M., et al., eds.) 5th Edn., Fields Virology, Lippincott Williams & Wilkins, Philadelphia, PA, pp. 796–839.
  • 110.Konig H., Rosenwirth B. Purification and partial characterization of poliovirus protease 2A by means of a functional assay. J. Virol. 1988;62:1243–1250. doi: 10.1128/jvi.62.4.1243-1250.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 111.Deszcz L., Cencic R., Sousa C., Kuechler E., Skern T. An antiviral peptide inhibitor that is active against picornavirus 2A proteinases but not cellular caspases. J. Virol. 2006;80:9619–9627. doi: 10.1128/JVI.00612-06. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 112.De Palma A. M., Vliegen I., De Clercq E., Neyts J. Selective inhibitors of picornavirus replication. Med. Res. Rev. 2008;28:823–884. doi: 10.1002/med.20125. [DOI] [PubMed] [Google Scholar]
  • 113.Dragovich P. S., Webber S. E., Babine R. E., Fuhrman S. A., Patick A. K., Matthews D. A. L. C. A., Reich S. H., Prins T. J., Marakovits J. T., Littlefield E. S., Zhou R., Tikhe J., Ford C. E., Wallace M. B., Meador J. W. 3, Ferre R. A., Brown E. L., Binford S. L., Harr J. E., DeLisle D. M., Worland S. T. Structure-based design, synthesis, and biological evaluation of irreversible human rhinovirus 3C protease inhibitors. 1. Michael acceptor structure-activity studies. J. Med. Chem. 1998;41:2806–2018. doi: 10.1021/jm980068d. [DOI] [PubMed] [Google Scholar]
  • 114.Guo Y., Wang Y., Cao L., Wang P., Qing J., Zheng Q., Shang L., Yin Z., Sun Y. A conserved inhibitory mechanism of a lycorine derivative against enterovirus and hepatitis C virus. Antimicrob. Agents Chemother. 2016;60:913–924. doi: 10.1128/AAC.02274-15. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 115.Lu G., Qi J., Chen Z., Xu X., Gao F., Lin D., Qian W., Liu H., Jiang H., Yan J., Gao G. F. Enterovirus 71 and coxsackievirus A16 3C proteases: binding to rupintrivir and their substrates and anti-hand, foot, and mouth disease virus drug design. J. Virol. 2011;85:10319–10331. doi: 10.1128/JVI.00787-11. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 116.Chen T. C., Weng K. F., Chang S. C., Lin J. Y., Huang P. N., Shih S. R. Development of antiviral agents for enteroviruses. J. Antimicrob. Chemother. 2008;62:1169–1173. doi: 10.1093/jac/dkn424. [DOI] [PubMed] [Google Scholar]
  • 117.Tijsma A., Thibaut H. J., Franco D., Dallmeier K., Neyts J. Hydantoin: the mechanism of its in vitro anti-enterovirus activity revisited. Antiviral Res. 2016;133:106–109. doi: 10.1016/j.antiviral.2016.07.023. [DOI] [PubMed] [Google Scholar]
  • 118.Velu A. B., Chen G. W., Hsieh P. T., Horng J. T., Hsu J. T., Hsieh H. P., Chen T. C., Weng K. F., Shih S. R. BPR-3P0128 inhibits RNA-dependent RNA polymerase elongation and VPg uridylylation activities of enterovirus 71. Antiviral Res. 2014;112:18–25. doi: 10.1016/j.antiviral.2014.10.003. [DOI] [PubMed] [Google Scholar]
  • 119.Wang H., Zhang D., Ge M., Li Z., Jiang J., Li Y. Formononetin inhibits enterovirus 71 replication by regulating COX-2/PGE2 expression. Virol. J. 2015;12:35. doi: 10.1186/s12985-015-0264-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 120.Strating J. R., Van der Linden L., Albulescu L., Bigay J., Arita M., Delang L., Leyssen P., Van der Schaar H. M., Lanke K. H., Thibaut H. J., Ulferts R., Drin G., Schlinck N., Wubbolts R. W., Sever N., Head S. A., Liu J. O., Beachy P. A., De Matteis M. A., Shair M. D., Olkkonen V. M., Neyts J., Van Kuppeveld F. J. Itraconazole inhibits enterovirus replication by targeting the oxysterol-binding protein. Cell Rep. 2015;10:600–615. doi: 10.1016/j.celrep.2014.12.054. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 121.Tsin I. Y., Laa P. C. Development of novel miRNA-based vaccines and antivirals against enterovirus 71. Curr. Pharm. Des. 2016;22:6694–6700. doi: 10.2174/1381612822666160720165613. [DOI] [PubMed] [Google Scholar]
  • 122.Lee K. M., Chen C. J., Shih S. R. Trends Microbiol. 2017. Regulation mechanisms of viral IRES-driven translation. [DOI] [PubMed] [Google Scholar]
  • 123.Pilipenko E. V., Viktorova E. G., Guest S. T., Agol V. I., Roos R. P. Cell specific proteins regulate viral RNA translation and virus induced disease. EMBO J. 2001;20:6899–6908. doi: 10.1093/emboj/20.23.6899. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 124.Guest S., Pilipenko E., Sharma K., Chumakov K., Roos R. Molecular mechanisms of attenuation of the Sabin strain of poliovirus type 3. J. Virol. 2004;78:11097–11107. doi: 10.1128/JVI.78.20.11097-11107.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 125.Romero-Lopez C., Barroso-Deljesus A., Berzal-Herranz A. The chaperone-like activity of the hepatitis C virus IRES and CRE elements regulates genome dimerization. Sci. Rep. 2017;24:43415. doi: 10.1038/srep43415. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 126.Wakita T., Wands J. R. Specific inhibition of hepatitis C virus expression by antisense oligodeoxynu-cleotides. In vitro model for selection of target sequence. J. Biol. Chem. 1994;269:14205–14210. [PubMed] [Google Scholar]
  • 127.Hanecak R., Brown-Driver V., Fox M. C., Azad R. F., Furusako S., Nozaki C., Ford C., Sasmor H., Anderson K. P. Antisense oligonucleotide inhibition of hepatitis C virus gene expression in transformed hepatocytes. J. Virol. 1996;70:5203–5212. doi: 10.1128/jvi.70.8.5203-5212.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 128.Yang D., Wilson J. E., Anderson D. R., Bohunek L., Cordeiro C., Kandolf R., MacManus B. M. In vitro mutational and inhibitory analysis of the cis-acting translational elements within the 5' untranslated region of coxsackievirus B3: potential targets for antiviral action of antisense oligomers. Virology. 1997;228:63–73. doi: 10.1006/viro.1996.8366. [DOI] [PubMed] [Google Scholar]
  • 129.Brown M. C., Gromeier M. Cytotoxic and immunogenic mechanisms of recombinant oncolytic poliovirus. Curr. Opin. Virol. 2015;13:81–85. doi: 10.1016/j.coviro.2015.05.007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 130.Nulf C. J., Corey D. Intracellular inhibition of hepatitis C virus (HCV) internal ribosomal entry site (IRES)-dependent translation by peptide nucleic acids (PNAs) and locked nucleic acids (LNAs) Nucleic Acids Res. 2004;32:3792–3798. doi: 10.1093/nar/gkh706. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 131.Martinand-Mari C., Lebleu B., Robbins I. Oligonucleotide-based strategies to inhibit human hepatitis C virus. Oligonucleotides. 2003;13:539–548. doi: 10.1089/154545703322860834. [DOI] [PubMed] [Google Scholar]
  • 132.Dasgupta A., Das S., Izumi R., Venkatesan A., Barat B. Targeting internal ribosome entry site (IRES)-mediated translation to block hepatitis C and other RNA viruses. FEMS Microbiol. Lett. 2004;234:189–199. doi: 10.1016/j.femsle.2004.03.045. [DOI] [PubMed] [Google Scholar]
  • 133.Dibrov S. M., Parsons J., Carnevali M., Zhou S., Rynearson K. D., Ding K., Garcia Sega E., Brunn N. D., Boerneke M. A., Castaldi M. P., Hermann T. Hepatitis C virus translation inhibitors targeting the internal ribosomal entry site. J. Med. Chem. 2014;57:1694–1707. doi: 10.1021/jm401312n. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 134.McCaffrey A. P., Meuse L., Karimi M., Contag C. H., Kay M. A. A potent and specific morpholino antisense inhibitor of hepatitis C translation in mice. Hepatology. 2003;38:503–508. doi: 10.1053/jhep.2003.50330. [DOI] [PubMed] [Google Scholar]
  • 135.Stone J. K., Rijnbrand R., Stein D. A., Ma Y., Yang Y., Iversen P. L., Andino R. A morpholino oligomer targeting highly conserved internal ribosome entry site sequence is able to inhibit multiple species of picornavirus. Antimicrob. Agents Chemother. 2008;52:1970–1981. doi: 10.1128/AAC.00011-08. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 136.Kanda T., Steele R., Ray R., Ray R. B. Small interfering RNA targeted to hepatitis C virus 5'-nontrans-lated region exerts potent antiviral effect. J. Virol. 2007;81:669–676. doi: 10.1128/JVI.01496-06. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 137.Ma H., Dallas A., Ilves H., Shorenstein J., MacLachlan I., Klumpp K., Johnston B. H. Formulated minimal-length synthetic small hairpin RNAs are potent inhibitors of hepatitis C virus in mice with humanized livers. Gastroenterology. 2014;146:63–65. doi: 10.1053/j.gastro.2013.09.049. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 138.Mao X., Li X., Mao X., Huang Z., Zhang C., Zhang W., Wu J., Li G. Virol. J. 2014. Inhibition of hepatitis C virus by an M1GS ribozyme derived from the catalytic RNA subunit of Escherichia coli RNase P. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 139.Levesque M. V., Levesque D., Briere F. P., Perreault J.-P. Investigating a new generation of ribozymes in order to target HCV. PLoS ONE. 2010;5:e9627. doi: 10.1371/journal.pone.0009627. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 140.Sugiyama R., Hayafune M., Habu Y., Yamamoto N., Takaku H. HIV-1RT-dependent DNAzyme expression inhibits HIV-1 replication without the emergence of escape viruses. Nucleic Acids Res. 2011;39:589–598. doi: 10.1093/nar/gkq794. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 141.Silverman S. K. Catalytic DNA: scocpe, applications, and biochemistry of deoxyribozymes. Trends Biochem. Sci. 2016;41:595–609. doi: 10.1016/j.tibs.2016.04.010. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 142.Pudi R., Ramamurthy S. S., Das S. A peptide derived from RNA recognition motif 2 of human La protein binds to hepatitis C virus internal ribosome entry site, prevents ribosomal assembly, and inhibits internal initiation of translation. J. Virol. 2005;79:9842–9853. doi: 10.1128/JVI.79.15.9842-9853.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 143.Fontanes V., Raychaudhuri S., Dasgupta A. A cell-permeable peptide inhibits hepatitis C virus replication by sequestering IRES transacting factors. Virology. 2009;394:82–90. doi: 10.1016/j.virol.2009.08.012. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 144.De Clercq E., Li G. Approved antiviral drugs over the past 50 years. Clinic. Microbiol. Rev. 2016;29:695–747. doi: 10.1128/CMR.00102-15. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 145.Novac O., Guenier A. S., Pelletier J. Inhibitors of protein synthesis identified by a high throughput multiplexed translation screen. Nucleic Acids Res. 2004;32:902–915. doi: 10.1093/nar/gkh235. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 146.Li Z., Khaliq M., Zhou Z., Post C. B., Kuhn R. J., Cushman M. Design, synthesis, and biological evaluation of antiviral agents targeting flavivirus envelope proteins. J. Med. Chem. 2008;51:4660–4671. doi: 10.1021/jm800412d. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 147.Wang J., Du J., Wu Z., Jin Q. Quinacrine impairs enterovirus 71 RNA replication by preventing binding of polypyrimidine-tract binding protein with internal ribosome entry sites. PLoS One. 2013;8:e52954. doi: 10.1371/journal.pone.0052954. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 148.Tong J., Wang Y., Lu Y. New developments in small molecular compounds for anti-hepatitis C virus (HCV) therapy. J. Zhejiang University. Science. B. 2012;13:56–82. doi: 10.1631/jzus.B1100120. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 149.Wakita T., Wands J. R. Specific inhibition of hepatitis C virus expression by antisense oligodeoxynu-cleotides. In vitro model for selection of target sequence. J. Biol. Chem. 1994;269:14205–14210. [PubMed] [Google Scholar]
  • 150.Hanecak R., Brown-Driver V., Fox M. C., Azad R. F., Furusako S., Nozaki C., Ford C., Sasmor H., Anderson K. P. Antisense oligonucleotide inhibition of hepatitis C virus gene expression in transformed hepatocytes. J. Virol. 1996;70:5203–5212. doi: 10.1128/jvi.70.8.5203-5212.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 151.Martinand-Mari C., Lebleu B., Robbins I. Oligonucleotide-based strategies to inhibit human hepatitis C virus. Oligonucleotides. 2003;13:539–548. doi: 10.1089/154545703322860834. [DOI] [PubMed] [Google Scholar]
  • 152.Nulf C. J., Corey D. Intracellular inhibition of hepatitis C virus (HCV) internal ribosomal entry site (IRES)-dependent translation by peptide nucleic acids (PNAs) and locked nucleic acids (LNAs) Nucleic Acids Res. 2004;32:3792–3798. doi: 10.1093/nar/gkh706. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 153.Mutso M., Nikonov A., Pihlak A., Zusinaite E., Viru L., Selyutina A., Reintamm T., Kelve M., Saarma M., Karelson M., Merits A. RNA interference-guided targeting of hepatitis C virus replication with antisense locked nucleic acid-based oligonucleotides containing 8-oxo-dG modifications. PLoS One. 2015;10:e0128686. doi: 10.1371/journal.pone.0128686. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 154.Karkare S., Bhatnagar D. Promising nucleic acid analogs and mimics: characteristic features and applications of PNA. LNA, and morpholino, Appl. Microbiol. Biotechnol. 2006;71:575–586. doi: 10.1007/s00253-006-0434-2. [DOI] [PubMed] [Google Scholar]
  • 155.Stone J. K., Rijnbrand R., Stein D. A., Ma Y., Yang Y., Iversen P. L., Andino R. A morpholino oligomer targeting highly conserved internal ribosome entry site sequence is able to inhibit multiple species of picornavirus. Antimicrob. Agents Chemother. 2008;52:1970–1981. doi: 10.1128/AAC.00011-08. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 156.Stein D. A. Inhibition of RNA virus infections with peptide-conjugated morpholino oligomers. Curr. Pharm. Des. 2008;14:2619–2634. doi: 10.2174/138161208786071290. [DOI] [PubMed] [Google Scholar]
  • 157.Tan C. W., Chan Y. F., Quah Y. W., Poh C. L. Inhibition of enterovirus 71 infection by antisense octaguanidinium dendrimer-conjugated morpholino oligomers. Antiviral Res. 2014;107:35–41. doi: 10.1016/j.antiviral.2014.04.004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 158.Dasgupta A., Das S., Izumi R., Venkatesan A., Barat B. Targeting internal ribosome entry site (IRES)-mediated translation to block hepatitis C and other RNA viruses. FEMS Microbiol. Lett. 2004;234:189–199. doi: 10.1016/j.femsle.2004.03.045. [DOI] [PubMed] [Google Scholar]
  • 159.Holoch D., Moazed D. RNA-mediated epigenetic regulation of gene expression. Nat. Rev. Genet. 2015;16:71–84. doi: 10.1038/nrg3863. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 160.Gitlin L., Karelsky S., Andino R. Short interfering RNA confers intracellular antiviral immunity in human cells. Nature. 2002;418:430–434. doi: 10.1038/nature00873. [DOI] [PubMed] [Google Scholar]
  • 161.Torrecilla J., Del Pozo-Rodriguez A., Apaolaza P. S., Solinis M. A., Rodriguez-Gascon A. Solid lipid nanoparticles as non-viral vector for the treatment of chronic hepatitis C by RNA interference. Int. J. Pharm. 2015;479:181–188. doi: 10.1016/j.ijpharm.2014.12.047. [DOI] [PubMed] [Google Scholar]
  • 162.Sledz C. A., Holko M., De Veer M. J., Silverman R. H., Williams B. R. Activation of the interferon system by short-interfering RNAs. Nat. Cell. Biol. 2003;5:834–839. doi: 10.1038/ncb1038. [DOI] [PubMed] [Google Scholar]
  • 163.Silverman S. K., Baum D. A. Use of deoxyri-bozymes in RNA research. Methods Enzymol. 2009;469:95–117. doi: 10.1016/S0076-6879(09)69005-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 164.Roy S., Gupta N., Subramanian N., Monda L. T., Banerjea A. C., Das S. Sequence-specific cleavage of hepatitis C virus RNA by DNAzymes: inhibition of viral RNA translation and replication. J. Gen. Virol. 2008;89:1579–1586. doi: 10.1099/vir.0.83650-0. [DOI] [PubMed] [Google Scholar]
  • 165.Macejak D. G., Jensen K. L., Jamison S. F., Domenico K., Roberts E. C., Chaudhary N., Von Carlowitz I., Bellon L., Tong M. J., Conrad A., Pavco P. A., Blatt L. M. Inhibition of hepatitis C virus (HCV)-RNA-dependent translation and replication of a chimeric HCV poliovirus using synthetic stabilized ribozymes. Hepatology. 2000;31:769–776. doi: 10.1002/hep.510310331. [DOI] [PubMed] [Google Scholar]
  • 166.Romero-Lopez C., Berzal-Herranz B., Gomez J., Berzal-Herranz A. An engineered inhibitor RNA that efficiently interferes with hepatitis C virus translation and replication. Antiviral Res. 2012;94:131–138. doi: 10.1016/j.antiviral.2012.02.015. [DOI] [PubMed] [Google Scholar]
  • 167.Kumar D., Chaudhury I., Kar P., Das R. H. Site-specific cleavage of HCV genomic RNA and its cloned core and NS5B genes by DNAzyme. J. Gastroenterol. Hepatol. 2009;24:872–878. doi: 10.1111/j.1440-1746.2008.05717.x. [DOI] [PubMed] [Google Scholar]
  • 168.Yuan J., Stein D. A., Lim T., Qui D., Coughlin S., Liu Z., Wang Y., Blouch R., Moulton H. M., Iversen P. L., Yang D. Inhibition of coxsackievirus B3 in cell cultures and in mice by peptide-conjugated morpholino oligomers targeting the internal ribosome entry site. J. Virol. 2006;80:11510–11519. doi: 10.1128/JVI.00900-06. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 169.Abet V., Mariani A., Truscott F. R., Britton S., Rodriguez R. Biased and unbiased strategies to identify biologically active small molecules. Bioorg. Med. Chem. 2014;22:4474–4489. doi: 10.1016/j.bmc.2014.04.019. [DOI] [PubMed] [Google Scholar]
  • 170.Dietrich U., Durr R., Koch J. Peptides as drugs: from screening to application. Curr. Pharm. Biotechnol. 2013;14:501–512. doi: 10.2174/13892010113149990205. [DOI] [PubMed] [Google Scholar]
  • 171.Costa-Mattioli M., Svitkin Y., Sonenberg N. La autoantigen is necessary for optimal function of the poliovirus and hepatitis C virus internal ribosome entry site in vivo and in vitro. Mol. Cell Biol. 2004;24:6861–6870. doi: 10.1128/MCB.24.15.6861-6870.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 172.Wurth L., Gebauer F. RNA-binding proteins, multifaceted translational regulators in cancer. Biochim. Biophys. Acta. 2015;1849:881–886. doi: 10.1016/j.bbagrm.2014.10.001. [DOI] [PubMed] [Google Scholar]
  • 173.Novac O., Guenier A. S., Pelletier J. Inhibitors of protein synthesis identified by a high throughput multiplexed translation screen. Nucleic Acids Res. 2004;32:902–915. doi: 10.1093/nar/gkh235. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 174.Gasparian A. V., Neznanov N., Jha S., Galkin O., Moran J. J., Gudkov A. V., Gurova A. V., Komar A. A. Inhibition of encephalomyocarditis virus and poliovirus replication by quinacrine: implications for the design and discovery of novel antiviral drugs. J. Virol. 2010;84:9390–9397. doi: 10.1128/JVI.02569-09. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 175.Wang J., Du J., Wu Z., Jin Q. Quinacrine impairs enterovirus 71 RNA replication by preventing binding of polypyrimidine-tract binding protein with internal ribosome entry sites. PLoS One. 2013;8:e52954. doi: 10.1371/journal.pone.0052954. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 176.Rynearson K. D., Charrette B., Gabriel C., Moreno J., Boerneke M. A., Dibrov S. M., Hermann T. 2-Aminobenzoxazole ligands of the hepatitis C virus internal ribosome entry site. Bioorg. Med. Chem. Lett. 2014;24:3521–3525. doi: 10.1016/j.bmcl.2014.05.088. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 177.Direct effect antiviral preparations registered with WHO: https://www.whocc.no/atc_ddd_index/?code=J05A (official web site).

Articles from Biochemistry. Biokhimiia are provided here courtesy of Nature Publishing Group

RESOURCES