Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 2003;20(9):551–561. doi: 10.1023/B:GLYC.0000043292.64358.f1

Recombinant viral sialate-O-acetylesterases

Peter Strasser, Ulrike Unger, Birgit Strobl, Ulrike Vilas, Reinhard Vlasak
PMCID: PMC7087582  PMID: 15454694

Abstract

Viral O-acetylesterases were first identified in several viruses, including influenza C viruses and coronaviruses. These enzymes are capable of removing cellular receptors from the surface of target cells. Hence they are also known as “receptor destroying” enzymes. We have cloned and expressed several recombinant viral O-acetylesterases. These enzymes were secreted from Sf9 insect cells as chimeric proteins fused to eGFP. A purification scheme to isolate the recombinant O-acetylesterase of influenza C virus was developed. The recombinant enzymes derived from influenza C viruses specifically hydrolyze 9-O-acetylated sialic acids, while that of sialodacryoadenitis virus, a rat coronavirus related to mouse hepatitis virus, is specific for 4-O-acetylated sialic acid. The recombinant esterases were shown to specifically de-O-acetylate sialic acids on glycoconjugates. We have also expressed esterase knockout proteins of the influenza C virus hemagglutinin-esterase. The recombinant viral proteins can be used to unambiguously identify O-acetylated acids in a variety of assays. Published in 2004..

Keywords: O-acetylated sialic acids, virus receptor, influenza C virus, rat coronavirus, receptor-destroying enzyme

References

  • 1.Shen Y, Tiralongo J, Iwersen M, Sipos B, Kalthoff H, Schauer R. Characterization of the sialate-7(9)-O-acetyltransferase from the microsomes of human colonic mucosa. Biol Chem. 2002;383:307–17. doi: 10.1515/BC.2002.033. [DOI] [PubMed] [Google Scholar]
  • 2.Higa HH, Butor C, Diaz S, Varki A. O-acetylation and de-O-acetylation of sialic acids. O-acetylation of sialic acids in the rat liver Golgi apparatus involves an acetyl intermediate and essential histidine and lysine residues-a transmembrane reaction? J Biol Chem. 1989;264:19427–34. [PubMed] [Google Scholar]
  • 3.Mason DY, Andre P, Bensussan A, Buckley C, Civin C, Clark E, de Haas M, Goyert S, Hadam M, Hart D, Horejsi V, Meuer S, Morissey J, Schwartz-Albiez R, Shaw S, Simmons D, Uguccioni M, van der Schoot E, Viver E, Zola H. CD antigens 2001. Tissue Antigens. 2001;58:425–30. doi: 10.1034/j.1399-0039.2001.580614.x. [DOI] [PubMed] [Google Scholar]
  • 4.Varki A, Hooshmand F, Diaz S, Varki NM, Hedrick SM. Develop-mental abnormalities in transgenic mice expressing a sialic acid-specific 9-O-acetylesterase. Cell. 1991;65:65–74. doi: 10.1016/0092-8674(91)90408-Q. [DOI] [PubMed] [Google Scholar]
  • 5.Klein A, Krishna M, Varki NM, Varki A. 9-O-acetylated sialic acids have widespread but selective expression: Analysis us-ing a chimeric dual-function probe derived from influenza C hemagglutinin-esterase. Proc Natl Acad Sci USA. 1994;91:7782–6. doi: 10.1073/pnas.91.16.7782. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Shi WX, Chammas R, Varki A. Regulation of sialic acid 9-O-acetylation during the growth and differentiation of murine ery-throleukemia cells. J Biol Chem. 1996;271:31517–25. doi: 10.1074/jbc.271.49.31517. [DOI] [PubMed] [Google Scholar]
  • 7.Shi WX, Chammas R, Varki NM, Powell L, Varki A. Sialic acid 9-O-acetylation on murine erythroleukemia cells affects complement activation, binding to I-type lectins, and tissue homing. J Biol Chem. 1996;271:31526–32. doi: 10.1074/jbc.271.49.31526. [DOI] [PubMed] [Google Scholar]
  • 8.Krishna M, Varki A. 9-O-Acetylation of sialomucins: A novel marker of murine CD4 T cells that is regulated during maturation and activation. J Exp Med. 1997;185:1997–2013. doi: 10.1084/jem.185.11.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Schauer R, Kamerling JP. Chemistry, biochemistry and biology of sialic acids. In: Montreuil J, Vliegenthart JFG, Schachter H, editors. Glycoproteins II. Elsevier: Amsterdam; 1997. pp. 243–402. [Google Scholar]
  • 10.Varki A. Sialic acids as ligands in recognition phenomena. Faseb J. 1997;11:248–55. doi: 10.1096/fasebj.11.4.9068613. [DOI] [PubMed] [Google Scholar]
  • 11.Schauer R, Schmid H, Pommerencke J, Iwersen M, Kohla G. Metabolism and role of O-acetylated sialic acids. In: Wu AM, editor. The Molecular Immunology of Complex Carbohydrates 2. New York: Kluwer Academic/Plenum Publishers; 2001. pp. 325–42. [DOI] [PubMed] [Google Scholar]
  • 12.Angata T, Varki A. Chemical diversity in the sialic acids and re-lated alpha-keto acids: An evolutionary perspective. Chem Rev. 2002;102:439–69. doi: 10.1021/cr000407m. [DOI] [PubMed] [Google Scholar]
  • 13.Chen HY, Varki A. O-acetylation of GD3: An enigmatic modifi-cation regulating apoptosis? J Exp Med. 2002;196:1529–33. doi: 10.1084/jem.20021915. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Herrler G, Rott R, Klenk HD, Muller HP, Shukla AK, Schauer R. The receptor-destroying enzyme of influenza C virus is neuraminate-O-acetylesterase. Embo J. 1985;4:1503–6. doi: 10.1002/j.1460-2075.1985.tb03809.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Rogers GN, Herrler G, Paulson JC, Klenk HD. Influenza C virus uses 9-O-acetyl-N-acetylneuraminic acid as a high affinity recep-tor determinant for attachment to cells. J Biol Chem. 1986;261:5947–51. [PubMed] [Google Scholar]
  • 16.Vlasak R, Krystal M, Nacht M, Palese P. The influenza C virus glycoprotein (HE) exhibits receptor-binding (hemagglutinin) and receptor-destroying (esterase) activities. Virology. 1987;160:419–25. doi: 10.1016/0042-6822(87)90013-4. [DOI] [PubMed] [Google Scholar]
  • 17.Vlasak R, Luytjes W, Spaan W, Palese P. Human and bovine coron-aviruses recognize sialic acid-containing receptors similar to those of influenza C viruses. Proc Natl Acad Sci USA. 1988;85:4526–9. doi: 10.1073/pnas.85.12.4526. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Schultze B, Wahn K, Klenk HD, Herrler G. Isolated HE-protein from hemagglutinating encephalomyelitis virus and bovine coro-navirus has receptor-destroying and receptor-binding activity. Vi-rology. 1991;180:221–8. doi: 10.1016/0042-6822(91)90026-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Wurzer WJ, Obojes K, Vlasak R. The sialate-4-O-acetylesterases of coronaviruses related to mouse hepatitis virus: A proposal to reorganize group 2 Coronaviridae. J Gen Virol. 2002;83:395–402. doi: 10.1099/0022-1317-83-2-395. [DOI] [PubMed] [Google Scholar]
  • 20.Falk K, Namork E, Rimstad E, Mjaaland S, Dannevig BH. Char-acterization of infectious salmon anemia virus, an orthomyxo-like virus isolated from Atlantic salmon (Salmo salar L.) J Virol. 1997;71:9016–23. doi: 10.1128/jvi.71.12.9016-9023.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Kristiansen M, Froystad MK, Rishovd AL, Gjoen T. Characteri-zation of the receptor-destroying enzyme activity from infectious salmon anaemia virus. J Gen Virol. 2002;83:2693–7. doi: 10.1099/0022-1317-83-11-2693. [DOI] [PubMed] [Google Scholar]
  • 22.Hellebo A, Vilas U, Falk K, Vlasak R. Infectious salmon anemia virus specifically binds to and hydrolyzes 4-O-acetylated sialic acids. J Virol. 2004;78:3055–62. doi: 10.1128/JVI.78.6.3055-3062.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Falk K, Aspehaug V, Vlasak R, Endresen C. Identification and characterization of viral structural proteins of infectious salmon anemia virus. J Virol. 2004;78:3063–71. doi: 10.1128/JVI.78.6.3063-3071.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Cornelissen LA, Wierda CM, van der Meer FJ, Herrewegh AA, Horzinek MC, Egberink HF, de Groot RJ. Hemagglutinin-esterase, a novel structural protein of torovirus. J Virol. 1997;71:5277–86. doi: 10.1128/jvi.71.7.5277-5286.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Vlasak R, Vilas U, Strobl B, Kreil G. cDNAcloning and expression of secreted Xenopus laevis dipeptidyl aminopeptidase IV. Eur J Biochem. 1997;247:107–13. doi: 10.1111/j.1432-1033.1997.t01-1-00107.x. [DOI] [PubMed] [Google Scholar]
  • 26.Vlasak R, Unger-Ullmann C, Kreil G, Frischauf AM. Nucleotide sequence of cloned cDNA coding for honeybee prepromelittin. Eur J Biochem. 1983;135:123–6. doi: 10.1111/j.1432-1033.1983.tb07626.x. [DOI] [PubMed] [Google Scholar]
  • 27.Klausegger A, Strobl B, Regl G, Kaser A, Luytjes W, Vlasak R. Identification of a coronavirus hemagglutinin-esterase with a sub-strate specificity different from those of influenza C virus and bovine coronavirus. J Virol. 1999;73:3737–43. doi: 10.1128/jvi.73.5.3737-3743.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Regl G, Kaser A, Iwersen M, Schmid H, Kohla G, Strobl B, Vilas U, Schauer R, Vlasak R. The hemagglutinin-esterase of mouse hepatitis virus strain S is a sialate-4-O-acetylesterase. J Virol. 1999;73:4721–7. doi: 10.1128/jvi.73.6.4721-4727.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Strobl B, Vlasak R. The receptor-destroying enzyme of influenza C virus is required for entry into target cells. Virology. 1993;192:679–82. doi: 10.1006/viro.1993.1087. [DOI] [PubMed] [Google Scholar]
  • 30.Rosenthal PB, Zhang X, Formanowski F, Fitz W, Wong CH, Meier-Ewert H, Skehel JJ, Wiley DC. Structure of the haemagglutinin-esterase-fusion glycoprotein of influenza Cvirus. Nature. 1998;396:92–6. doi: 10.1038/23974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31.Muchmore EA, Varki A. Selective inactivation of influenza C es-terase: A probe for detecting 9-O-acetylated sialic acids. Science. 1987;236:1293–5. doi: 10.1126/science.3589663. [DOI] [PubMed] [Google Scholar]
  • 32.Vlasak R, Muster T, Lauro AM, Powers JC, Palese P. Influenza C virus esterase: Analysis of catalytic site, inhibition, and possible function. J Virol. 1989;63:2056–62. doi: 10.1128/jvi.63.5.2056-2062.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33.Edwardson JM. Effects of monensin on the processing and in-tracellular transport of influenza virus haemagglutinin in infected MDCK cells. J Cell Sci. 1984;65:209–21. doi: 10.1242/jcs.65.1.209. [DOI] [PubMed] [Google Scholar]
  • 34.Yoo D, Pei Y, Christie N, Cooper M. Primary structure of the sialo-dacryoadenitis virus genome: Sequence of the structural-protein region and its application for differential diagnosis. Clin Diagn Lab Immunol. 2000;7:568–73. doi: 10.1128/CDLI.7.4.568-573.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35.Tessier DC, Thomas DY, Khouri HE, Laliberte F, Vernet T. En-hanced secretion from insect cells of a foreign protein fused to the honeybee melittin signal peptide. Gene. 1991;98:177–83. doi: 10.1016/0378-1119(91)90171-7. [DOI] [PubMed] [Google Scholar]
  • 36.Shi WX, Chammas R, Varki A. Regulation of sialic acid 9-O-acetylation during the growth and differentiation of murine ery-throleukemia cells. J Biol Chem. 1996;271:31517–25. doi: 10.1074/jbc.271.49.31517. [DOI] [PubMed] [Google Scholar]
  • 37.Ariga T, Blaine GM, Yoshino H, Dawson G, Kanda T, Zeng GC, Kasama T, Kushi Y, Yu RK. Glycosphingolipid composition of murine neuroblastoma cells: O-acetylesterase gene downregulates the expression of O-acetylated GD3. Biochemistry. 1995;34:11500–7. doi: 10.1021/bi00036a024. [DOI] [PubMed] [Google Scholar]
  • 38.Birkle S, Ren S, Slominski A, Zeng G, Gao L, Yu RK. Down-regulation of the expression of O-acetyl-GD3 by the O-acetylesterase cDNA in hamster melanoma cells: Effects on cellu-lar proliferation, differentiation, and melanogenesis. J Neurochem. 1999;72:954–61. doi: 10.1046/j.1471-4159.1999.0720954.x. [DOI] [PubMed] [Google Scholar]
  • 39.Malisan F, Franchi L, Tomassini B, Ventura N, Condo I, Rippo MR, 2001).
  • 43.Bulai T, Bratosin D, Pons A, Montreuil J, Zanetta JP. Diversity of the human erythrocyte membrane sialic acids in relation with blood groups. FEBS Lett. 2003;534:185–9. doi: 10.1016/S0014-5793(02)03838-3. [DOI] [PubMed] [Google Scholar]

Articles from Glycoconjugate Journal are provided here courtesy of Nature Publishing Group

RESOURCES