Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 2006 Sep 29;33(1):129–135. doi: 10.1007/s00726-006-0403-1

Virtual screening for finding natural inhibitor against cathepsin-L for SARS therapy

S-Q Wang 1, Q-S Du 2,5, K Zhao 1, A-X Li 3, D-Q Wei 4,5, K-C Chou 5
PMCID: PMC7087620  PMID: 16998715

Summary.

Recently Simmons et al. reported a new mechanism for SARS virus entry into target cells, where MDL28170 was identified as an efficient inhibitor of CTSL-meditated substrate cleavage with IC50 of 2.5 nmol/l. Based on the molecule fingerprint searching method, 11 natural molecules were found in the Traditional Chinese Medicines Database (TCMD). Molecular simulation indicates that the MOL376 (a compound derived from a Chinese medicine herb with the therapeutic efficacy on the human body such as relieving cough, removing the phlegm, and relieving asthma) has not only the highest binding energy with the receptor but also the good match in geometric conformation. It was observed through docking studies that the van der Waals interactions made substantial contributions to the affinity, and that the receptor active pocket was too large for MDL21870 but more suitable for MOL736. Accordingly, MOL736 might possibly become a promising lead compound for CTSL inhibition for SARS therapy.

Keywords: Keywords: Severe acute respiratory syndrome (SARS) – MDL28170 – KZ7088 – Molecular simulation – Docking – Structural bioinformatics

References

  1. Anand K, Ziebuhr J, Wadhwani P, Mesters JR, Hilgenfeld R. Coronavirus main proteinase (3CL(pro)) structure: Basis for design of anti-SARS drugs. Science. 2003;300:1763–1767. doi: 10.1126/science.1085658. [DOI] [PubMed] [Google Scholar]
  2. Bron RD, Martin YC. Use of structure-activity data to compare structure-based clustering: methods and descriptors for use in compound selection. J Chem Info Comput Sci. 1996;36:572–584. doi: 10.1021/ci9501047. [DOI] [Google Scholar]
  3. Chou KC. Review: Structural bioinformatics and its impact to biomedical science. Curr Med Chem. 2004a;11:2105–2134. doi: 10.2174/0929867043364667. [DOI] [PubMed] [Google Scholar]
  4. Chou KC. Modelling extracellular domains of GABA-A receptors: subtypes 1, 2, 3, and 5. Biochem Biophys Res Commun. 2004b;316:636–642. doi: 10.1016/j.bbrc.2004.02.098. [DOI] [PubMed] [Google Scholar]
  5. Chou KC. Insights from modelling three-dimensional structures of the human potassium and sodium channels. J Proteome Res. 2004c;3:856–861. doi: 10.1021/pr049931q. [DOI] [PubMed] [Google Scholar]
  6. Chou KC. Insights from modelling the tertiary structure of BACE2. J Proteome Res. 2004d;3:1069–1072. doi: 10.1021/pr049905s. [DOI] [PubMed] [Google Scholar]
  7. Chou KC. Insights from modelling the 3D structure of the extracellular domain of alpha7 nicotinic acetylcholine receptor. Biochem Biophys Res Commun. 2004e;319:433–438. doi: 10.1016/j.bbrc.2004.05.016. [DOI] [PubMed] [Google Scholar]
  8. Chou KC. Coupling interaction between thromboxane A2 receptor and alpha-13 subunit of guanine nucleotide-binding protein. J Proteome Res. 2005a;4:1681–1686. doi: 10.1021/pr050145a. [DOI] [PubMed] [Google Scholar]
  9. Chou KC. Modeling the tertiary structure of human cathepsin-E. Biochem Biophys Res Commun. 2005b;331:56–60. doi: 10.1016/j.bbrc.2005.03.123. [DOI] [PubMed] [Google Scholar]
  10. Chou KC, Howe WJ. Prediction of the tertiary structure of the beta-secretase zymogen. Biochem Biophys Res Commun. 2002;292:702–708. doi: 10.1006/bbrc.2002.6686. [DOI] [PubMed] [Google Scholar]
  11. Chou KC, Watenpaugh KD, Heinrikson RL. A Model of the complex between cyclin-dependent kinase 5(Cdk5) and the activation domain of neuronal Cdk5 activator. Biochem Biophys Res Commun. 1999;259:420–428. doi: 10.1006/bbrc.1999.0792. [DOI] [PubMed] [Google Scholar]
  12. Chou KC, Tomasselli AG, Heinrikson RL. Prediction of the tertiary structure of a caspase-9/inhibitor complex. FEBS Lett. 2000;470:249–256. doi: 10.1016/S0014-5793(00)01333-8. [DOI] [PubMed] [Google Scholar]
  13. Chou KC, Wei DQ, Zhong WZ. Binding mechanism of coronavirus main proteinase with ligands and its implication to drug design against SARS. Biochem Biophys Res Commun. 2003;308:148–151. doi: 10.1016/S0006-291X(03)01342-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Du QS, Wang SQ, Jiang ZQ, Gao WN, Li Y, Wei DQ, Chou KC. Application of Bioinformatics in search for cleavable peptides of SARS CoV Mpro and chemical modification of octapeptides. Med Chem. 2005;1:209–213. doi: 10.2174/1573406053765468. [DOI] [PubMed] [Google Scholar]
  15. Ewing TJ, Makino S, Skillman AG, Kuntz ID. Dock 4.0: search strategies for automated molecular docking of flexible molecule databases. J Comput Aided Mol Des. 2001;15:411–428. doi: 10.1023/A:1011115820450. [DOI] [PubMed] [Google Scholar]
  16. Graham S, Dhaval NG, Andrew JR, Jacqueline DR, Scott LD, Paul B. Inhibitors of cathepsin L prevent severe acute respiratory syndrome coronavirus entry. Proc Natl Acad Sci OSA. 2005;102:11876–11881. doi: 10.1073/pnas.0505577102. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Guan Y, Zheng BJ, He YQ, Liu XL, Zhuang ZX, Cheung CL, Luo SW, Li PH, Zhang LJ, Guan YJ, et al. Isolation and characterization of viruses related to the SARS coronavirus from animals in southern China. Science. 2003;302:276–278. doi: 10.1126/science.1087139. [DOI] [PubMed] [Google Scholar]
  18. Guncar G, Pungercic G, Klemencic I, Turk V, Turk D. Crystal structure of Mhc class II associated P41 II fragment bound to cathepsin L reveals the structural basis for differentiation between cathepsins L and S. EMBO J. 1999;18:793–803. doi: 10.1093/emboj/18.4.793. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Jeffrey H, Diana Q, Zhong ZY, Barbara C. Inhibition of /I-amyloid formation identifies proteolytic precursors and SubceUular site of catabolism. Neuron. 1995;14:651–659. doi: 10.1016/0896-6273(95)90322-4. [DOI] [PubMed] [Google Scholar]
  20. Kakegawa H. Particapation of cathepsin L in bone resorption. FEBS Lett. 1993;321:247–250. doi: 10.1016/0014-5793(93)80118-E. [DOI] [PubMed] [Google Scholar]
  21. Kuntz ID, Demetri TM, Lang PT (2005) DOCK 5.3 User Manual. University of California
  22. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. 1997;23:2–25. doi: 10.1016/S0169-409X(96)00423-1. [DOI] [PubMed] [Google Scholar]
  23. Mary E, McGrath ME. The lysosomal cysteine proteases. Annu Rev Biophys Biomol Struct. 1999;28:181–204. doi: 10.1146/annurev.biophys.28.1.181. [DOI] [PubMed] [Google Scholar]
  24. Rota PA, Oberste MS, Monroe SS, Nix WA, Campagnoli R, Icenogle JP, Penaranda S, Bankamp B, Maher K, Chen MH, et al. Characterization of a novel coronavirus associated with severe acute respiratory syndrome. Science. 2003;300:1394–1399. doi: 10.1126/science.1085952. [DOI] [PubMed] [Google Scholar]
  25. Sheng XG, Wu J, Liu H, Zhang JI. Studies on the components of the fatty acid of Artemisia annua. Grassland Turf. 2004;4:68–70. [Google Scholar]
  26. Sheridan RP, Miller MD, Underwood DJ, Kearsley SK. Chemical similarity using geometric atom pair descriptors. J Chem Info Comput Sci. 1996;36:128–136. doi: 10.1021/ci950275b. [DOI] [Google Scholar]
  27. Shujaath M, Michael RA, Jeffery SW, Philippe B. Biochem Biophys Res Commun. 1998;157:1117–1123. [Google Scholar]
  28. Wei DQ, Du QS, Sun H, Chou KC. Insights from modeling the 3D structure of H5N1 influenza virus neuraminidase and its binding interactions with ligands. Biochem Biophys Res Commun. 2006;344:1048–1055. doi: 10.1016/j.bbrc.2006.03.210. [DOI] [PubMed] [Google Scholar]
  29. Yang H, Yang M, Ding Y, Liu Y, Lou Z, Zhou Z, Sun L, Mo L, Ye S, Pang H, Gao GF, Anand K, Bartlam M, Hilgenfeld R, Rao ZH. The crystal structures of severe acute respiratory syndrome virus main protease and its complex with an inhibitor. Proc Natl Acad Sci USA. 2003;100:13190–13195. doi: 10.1073/pnas.1835675100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Zhou GP, Troy FA., 2nd Characterization by NMR and molecular modeling of the binding of polyisoprenols and polyisoprenyl recognition sequence peptides: 3D structure of the complexes reveals sites of specific interactions. Glycobiology. 2003;13:51–71. doi: 10.1093/glycob/cwg008. [DOI] [PubMed] [Google Scholar]
  31. Zhou GP, Troy FA., 2nd NMR study of the preferred membrane orientation of polyisoprenols (dolichol) and the impact of their complex with polyisoprenyl recognition sequence peptides on membrane structure. Glycobiology. 2005a;15:347–359. doi: 10.1093/glycob/cwi016. [DOI] [PubMed] [Google Scholar]
  32. Zhou GP, Troy FA. NMR studies on how the binding complex of polyisoprenol recognition sequence peptides and polyisoprenols can modulate membrane structure. Curr Protein Peptide Sci. 2005b;6:399–411. doi: 10.2174/138920305774329377. [DOI] [PubMed] [Google Scholar]
  33. Zhou JJ, Xie GR, Yan XJ. Traditional chinese medicines: molecular structures, natural sources and applications. China: Chemical Industry Press; 2004. [Google Scholar]

Articles from Amino Acids are provided here courtesy of Nature Publishing Group

RESOURCES