Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 2007 Nov 5;35(2):389–396. doi: 10.1007/s00726-007-0604-2

Computational studies of the binding modes of A2A adenosine receptor antagonists

Y Ye 1, J Wei 1, X Dai 2, Q Gao 2
PMCID: PMC7087644  PMID: 17978889

Summary.

A molecular docking study was performed on several structurally diverse A2A AR antagonists, including xanthines, and non-xanthine type antagonists to investigate their binding modes with A2A adenosine receptor (AR), one of the four subtypes of AR, which is currently of great interest as a target for therapeutic intervention, in particular for Parkinson’s disease. The high-affinity binding site was found to be a hydrophobic pocket with the involvement of hydrogen bonding interactions as well as π–π stacking interactions with the ligands. The detailed binding modes for both xanthine and non-xanthine type A2A antagonists were compared and the essential features were extracted and converted to database searchable queries for virtual screening study of novel A2A AR antagonists. Findings from this study are helpful for elucidating the binding pattern of A2A AR antagonists and for the design of novel active ligands.

Keywords: Keywords: Adenosine receptors – A2A AR antagonists – Binding mode – Docking – Pharmacophore – Virtual screening

Footnotes

Authors’ address: Qingzhi Gao, Chemistry Department, XenoPort Inc., 3410 Central Expressway, Santa Clara, CA 95051, U.S.A.

References

  1. Baraldi PG, Cacciari B, Romagnoli R, Spalluto G, Monopoli A, Ongini E, Varani K, Borea PA. 7-Substituted 5-amino-2-(2-furyl)pyrazolo[4,3-e]-1,2,4-triazolo[1,5-c]pyrimidines as A2A adenosine receptor antagonists: a study on the importance of modifications at the side chain on the activity and solubility. J Med Chem. 2002;45:115–126. doi: 10.1021/jm010924c. [DOI] [PubMed] [Google Scholar]
  2. Barbara C, Giorgia P, Giampiero S. Medicinal chemistry of A2A adenosine receptor antagonists. Curr Top Med Chem. 2003;3:403–411. doi: 10.2174/1568026033392183. [DOI] [PubMed] [Google Scholar]
  3. Bockaert J, Pin JP. Molecular tinkering of G protein-coupled receptors: an evolutionary success. EMBO J. 1999;18:1723–1729. doi: 10.1093/emboj/18.7.1723. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chou KC. Insights from modelling the 3D structure of the extracellular domain of alpha7 nicotinic acetylcholine receptor. Biochem Biophys Res Commun. 2004a;319:433–438. doi: 10.1016/j.bbrc.2004.05.016. [DOI] [PubMed] [Google Scholar]
  5. Chou KC. Insights from modelling the tertiary structure of BACE2. J Proteome Res. 2004b;3:1069–1072. doi: 10.1021/pr049905s. [DOI] [PubMed] [Google Scholar]
  6. Chou KC. Modelling extracellular domains of GABA-A receptors: subtypes 1, 2, 3, and 5. Biochem Biophys Res Commun. 2004c;316:636–642. doi: 10.1016/j.bbrc.2004.02.098. [DOI] [PubMed] [Google Scholar]
  7. Chou KC. Molecular therapeutic target for type-2 diabetes. J Proteome Res. 2004d;3:1284–1288. doi: 10.1021/pr049849v. [DOI] [PubMed] [Google Scholar]
  8. Chou KC. Review: structural bioinformatics and its impact to biomedical science. Curr Med Chem. 2004e;11:2105–2134. doi: 10.2174/0929867043364667. [DOI] [PubMed] [Google Scholar]
  9. Chou KC. Coupling interaction between thromboxane A2 receptor and alpha-13 subunit of guanine nucleotide-binding protein. J Proteome Res. 2005a;4:1681–1686. doi: 10.1021/pr050145a. [DOI] [PubMed] [Google Scholar]
  10. Chou KC. Modeling the tertiary structure of human cathepsin-E. Biochem Biophys Res Commun. 2005b;331:56–60. doi: 10.1016/j.bbrc.2005.03.123. [DOI] [PubMed] [Google Scholar]
  11. Chou KC. Structural bioinformatics and its impact to biomedical science and drug discovery. In: Atta-ur-Rahman, Reitz AB, editors. Frontiers in medicinal chemistry. The Netherlands: Bentham Science Publishers; 2006. pp. 455–502. [Google Scholar]
  12. Chou KC, Tomasselli AG, Heinrikson RL. Prediction of the tertiary structure of a caspase-9/inhibitor complex. FEBS Lett. 2000;470:249–256. doi: 10.1016/S0014-5793(00)01333-8. [DOI] [PubMed] [Google Scholar]
  13. Chou KC, Watenpaugh KD, Heinrikson RL. A model of the complex between cyclin-dependent kinase 5(Cdk5) and the activation domain of neuronal Cdk5 activator. Biochem Biophys Res Commun. 1999;259:420–428. doi: 10.1006/bbrc.1999.0792. [DOI] [PubMed] [Google Scholar]
  14. Chou KC, Wei DQ, Du QS, Sirois S, Zhong WZ. Review: progress in computational approach to drug development against SARS. Curr Med Chem. 2006;13:3263–3270. doi: 10.2174/092986706778773077. [DOI] [PubMed] [Google Scholar]
  15. Chou KC, Wei DQ, Zhong WZ. Binding mechanism of coronavirus main proteinase with ligands and its implication to drug design against SARS. Biochem Biophys Res Commun. 2003;308:148–151. doi: 10.1016/S0006-291X(03)01342-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Du QS, Wang S, Wei DQ, Sirois S, Chou KC. Molecular modelling and chemical modification for finding peptide inhibitor against SARS CoV Mpro. Anal Biochem. 2005a;337:262–270. doi: 10.1016/j.ab.2004.10.003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Du QS, Wang SQ, Jiang ZQ, Gao WN, Li YD, Wei DQ, Chou KC. Application of bioinformatics in search for cleavable peptides of SARS-CoV Mpro and chemical modification of octapeptides. Med Chem. 2005b;1:209–213. doi: 10.2174/1573406053765468. [DOI] [PubMed] [Google Scholar]
  18. Du QS, Wang SQ, Wei DQ, Zhu Y, Guo H, Sirois S, Chou KC. Polyprotein cleavage mechanism of SARS CoV Mpro and chemical modification of octapeptide. Peptides. 2004;25:1857–1864. doi: 10.1016/j.peptides.2004.06.018. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Du QS, Sun H, Chou KC. Inhibitor design for SARS coronavirus main protease based on “distorted key theory”. Med Chem. 2007a;3:1–6. doi: 10.2174/157340607779317616. [DOI] [PubMed] [Google Scholar]
  20. Du QS, Wang SQ, Chou KC (2007b) Analogue inhibitors by modifying oseltamivir based on the crystal neuraminidase structure for treating drug-resistant H5N1 virus. Biochem Biophys Res Commun; doi: 10.1016/j.bbrc.2007.08.025 [DOI] [PubMed]
  21. Elenkov IJ, Chrousos GP, Wilder RL. Neuroendocrine regulation of IL-2 and TNF-alpha/IL-10 balance, clinical implications. Ann NY Acad Sci. 2000;917:94–105. doi: 10.1111/j.1749-6632.2000.tb05374.x. [DOI] [PubMed] [Google Scholar]
  22. Feokistov I, Biaggioni I. Pharmalogical characterization of adenosine A2B receptors. Biochem Pharmacol. 1998;55:627–633. doi: 10.1016/S0006-2952(97)00512-1. [DOI] [PubMed] [Google Scholar]
  23. Fredholm BB, IJzerman AP, Jacobson KA, Klotz KN, Linden J. International union of pharmacology, XXV. Nomenclature and classification of adenosine receptors. Pharmacol Rev. 2001;53:527–552. [PMC free article] [PubMed] [Google Scholar]
  24. Gao WN, Wei DQ, Li Y, Gao H, Xu WR, Li AX, Chou KC. Agaritine and its derivatives are potential inhibitors against HIV proteases. Med Chem. 2007;3:221–226. doi: 10.2174/157340607780620644. [DOI] [PubMed] [Google Scholar]
  25. Gui XL, Li L, Wei DQ, Zhu YS, Chou KC (2007) Cleavage mechanism of the H5N1 hemagglutinin by trypsin and furin. Amino Acids (in press) [DOI] [PMC free article] [PubMed]
  26. Hourani SM, Boon K, Fooks HM, Prentice DJ. Role of cyclic nucleotides in vasodilations of the rat thoracic aorta induced by adenosine analogues. Br J Pharmacol. 2001;133:833–840. doi: 10.1038/sj.bjp.0704140. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Ivanov AA, Baskin II, Palyulin VA, Piccagli L, Baraldi PG, Zefirov NS. Molecular modeling and molecular dynamics simulation of the human A2B adenosine receptor. The study of the possible binding modes of the A2B receptor antagonists. J Med Chem. 2005;48:6813–6820. doi: 10.1021/jm049418o. [DOI] [PubMed] [Google Scholar]
  28. Ivanov AA, Baskin II, Palyulin VA, Zefirov NS. Molecular modeling the human A1 adenosine receptor and study of the mechanisms of its selective ligand binding. Dokl Biochem Biophys. 2002;386:271–274. doi: 10.1023/A:1020715812906. [DOI] [PubMed] [Google Scholar]
  29. Ivanov AA, Baskin II, Palyulin VA, Zefirov NS. Molecular modeling of the human A2A adenosine receptor. Dokl Biochem Biophys. 2003;389:94–97. doi: 10.1023/A:1023632005607. [DOI] [PubMed] [Google Scholar]
  30. Kim J, Wess J, van Rhee AM, Schöneberg T, Jacobson KA. Site-directed mutagenesis identifies residues involved into ligand recognition in the human A2A adenosine receptor. J Biol Chem. 1995;270:13987–13997. doi: 10.1074/jbc.270.23.13987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Knutsen LJ, Weiss SM. kw-6002 (Kyowa Hakko Kogyo) Curr Opin Invest Drugs. 2001;2:668–673. [PubMed] [Google Scholar]
  32. Li L, Wei DQ, Wang JF, Chou KC. Computational studies of the binding mechanism of calmodulin with chrysin. Biochem Biophys Res Commun. 2007;358:1102–1107. doi: 10.1016/j.bbrc.2007.05.053. [DOI] [PubMed] [Google Scholar]
  33. Matasi JJ, Caldwell JP, Hao J, Neustadt B, Arik L, Foster CJ, Lachowicz J, Tulshian DB. The discovery and synthesis of novel adenosine receptor (A2A) antagonists. Bioorg Med Chem Lett. 2005;15:1333–1336. doi: 10.1016/j.bmcl.2005.01.019. [DOI] [PubMed] [Google Scholar]
  34. Müller CE, Geis U, Hipp J, Schobert U, Frobenius W, Pawlowski M, Suzuki F, Sandoval-Ramírez J. Synthesis and structure-activity relationship of 3,7-dimethyl-1-propargylxanthine derivatives, A2A-selective adenosine receptor antagonists. J Med Chem. 1997;40:4396–4405. doi: 10.1021/jm970515+. [DOI] [PubMed] [Google Scholar]
  35. Müller CE, Sandoval-Ramírez J, Schobert U, Geis U, Frobenius W, Klotz K. N,8-(Sulfostyryl)xanthines: water-soluble A2A-selective adenosine receptor antagonists. Bioorg Med Chem. 1998;6:707–719. doi: 10.1016/S0968-0896(98)00025-X. [DOI] [PubMed] [Google Scholar]
  36. Nonaka Y, Shimada J, Nonaka H, Koike N, Aoki N, Kobayashi H, Kase H, Yamaguchi K, Suzuki F. Photoisomerization of a potent and selective adenosine A2 antagonist, (E)-1,3-dipropyl-8-(3,4-dimethoxystyryl)-7-methylxanthine. J Med Chem. 1993;36:3731–3733. doi: 10.1021/jm00075a031. [DOI] [PubMed] [Google Scholar]
  37. Ongini E, Adami M, Ferri C, Bertorelli R. Adenosine A2A receptors and neuroprotection. Ann NY Acad Sci. 1997;825:30–48. doi: 10.1111/j.1749-6632.1997.tb48412.x. [DOI] [PubMed] [Google Scholar]
  38. Richardson PJ, Kase H, Jenner PG. Adenosine A2A receptor antagonists as new agents for the treatment of Parkinson’s disease. Trends Pharmacol Sci. 1997;18:338–344. doi: 10.1016/s0165-6147(97)01096-1. [DOI] [PubMed] [Google Scholar]
  39. Sauer R, Maurinsh J, Reith U, Fülle F, Klotz KN, Müller CE. Water-soluble phosphate prodrugs of 1-propargyl-8-styrylxanthine derivatives, A2A-selective adenosine receptor antagonists. J Med Chem. 2000;43:440–448. doi: 10.1021/jm9911480. [DOI] [PubMed] [Google Scholar]
  40. Sirois S, Wei DQ, Du QS, Chou KC. Virtual screening for SARS-CoV protease based on KZ7088 pharmacophore points. J Chem Inf Comput Sci. 2004;44:1111–1122. doi: 10.1021/ci034270n. [DOI] [PubMed] [Google Scholar]
  41. Stefano M, Giampiero S, Kenneth AJ. Techniques: recent developments in computer-aided engineering of GPCR ligands using the human adenosine A3 receptor as an example. Trends Pharmacol Sci. 2005;25:44–51. doi: 10.1016/j.tips.2004.11.006. [DOI] [PubMed] [Google Scholar]
  42. Vassalo R, Lipsky JJ. Theophylline: recent advances in the understanding of its mode of action and uses in clinical practice. Mayo Clin Proc. 1998;73:346–354. doi: 10.4065/73.4.346. [DOI] [PubMed] [Google Scholar]
  43. Varani K, Rigamonti D, Sipione S, Camurri A, Borea PA, Cattabeni F, Abbracchio MP, Cattaneo E. Aberrant amplification of A2A receptor signaling in striatal cells expressing mutant huntingtin. FASEB. 2001;15:1245–1247. [PubMed] [Google Scholar]
  44. Vu CB, Peng B, Kumaravel G, Smits G, Jin X, Phadke D, Engber T, Huang C, Reilly J, Tam S, Grant D, Hetu G, Chen L, Zhang J, Petter RC. Piperazine derivatives of [1,2,4]triazolo-[1,5-a][1,3,5] triazine as potent and selective adenosine A2A receptor antagonists. J Med Chem. 2004a;47:4291–4299. doi: 10.1021/jm0498405. [DOI] [PubMed] [Google Scholar]
  45. Vu CB, Shields P, Peng B, Kumaravel G, Jin X, Phadke D, Wang J, Engber T, Ayyub E, Petter RC. Triamino derivatives of triazolotriazine and triazolopyrimidine as adenosine A2a receptor antagonists. Bioorg Med Chem Lett. 2004b;14:4835–4838. doi: 10.1016/j.bmcl.2004.07.048. [DOI] [PubMed] [Google Scholar]
  46. Wang JF, Wei DQ, Li L, Zheng SY, Li YX, Chou KC. 3D Structure modeling of cytochrome P450 2C19 and its implication for personalized drug design. Biochem Biophys Res Commun. 2007a;355:513–519. doi: 10.1016/j.bbrc.2007.01.185. [DOI] [PubMed] [Google Scholar]
  47. Wang JF, Wei DQ, Lin Y, Wang YH, Du HL, Li YX, Chou KC. Insights from modeling the 3D structure of NAD(P)H-dependent D-xylose reductase of Pichia stipitis and its binding interactions with NAD and NADP. Biochem Biophys Res Commun. 2007b;359:323–329. doi: 10.1016/j.bbrc.2007.05.101. [DOI] [PubMed] [Google Scholar]
  48. Wang SQ, Du QS, Chou KC. Study of drug resistance of chicken influenza A virus (H5N1) from homology-modeled 3D structures of neuraminidases. Biochem Biophys Res Commun. 2007c;354:634–640. doi: 10.1016/j.bbrc.2006.12.235. [DOI] [PubMed] [Google Scholar]
  49. Wang SQ, Du QS, Zhao K, Li AX, Wei DQ, Chou KC. Virtual screening for finding natural inhibitor against cathepsin-L for SARS therapy. Amino Acids. 2007d;33:129–135. doi: 10.1007/s00726-006-0403-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Wei DQ, Sirois S, Du QS, Arias HR, Chou KC. Theoretical studies of Alzheimer’s disease drug candidate [(2,4-dimethoxy) benzylidene]-anabaseine dihydrochloride (GTS-21) and its derivatives. Biochem Biophys Res Commun. 2005;338:1059–1064. doi: 10.1016/j.bbrc.2005.10.047. [DOI] [PubMed] [Google Scholar]
  51. Wei DQ, Du QS, Sun H, Chou KC. Insights from modeling the 3D structure of H5N1 influenza virus neuraminidase and its binding interactions with ligands. Biochem Biophys Res Commun. 2006a;344:1048–1055. doi: 10.1016/j.bbrc.2006.03.210. [DOI] [PubMed] [Google Scholar]
  52. Wei DQ, Zhang R, Du QS, Gao WN, Li Y, Gao H, Wang SQ, Zhang X, Li AX, Sirois S, Chou KC. Anti-SARS drug screening by molecular docking. Amino Acids. 2006b;31:73–80. doi: 10.1007/s00726-006-0361-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Wei H, Zhang R, Wang C, Zheng H, Chou KC, Wei DQ. Molecular insights of SAH enzyme catalysis and their implication for inhibitor design. J Theor Biol. 2007;244:692–702. doi: 10.1016/j.jtbi.2006.09.011. [DOI] [PubMed] [Google Scholar]
  54. Wei J, Wang S, Gao S, Dai X, Gao Q. 3D-Pharmacophore models for selective A2A and A2B adenosine receptor antagonists. J Chem Inf Model. 2007;47(2):613–625. doi: 10.1021/ci600410m. [DOI] [PubMed] [Google Scholar]
  55. Zhang R, Wei DQ, Du QS, Chou KC. Molecular modeling studies of peptide drug candidates against SARS. Med Chem. 2006;2:309–314. doi: 10.2174/157340606776930736. [DOI] [PubMed] [Google Scholar]

Articles from Amino Acids are provided here courtesy of Nature Publishing Group

RESOURCES