Abstract
Cells infiltrating the nonsensory epithelium of the vomeronasal organ of virus-antibody-free rats exhibited surface immunoreactivity for β 2-microglobulin and immunoglobulin (Ig) E. They were further characterized by using immunohistochemical techniques with antibodies to cell-specific markers or histochemical techniques for immunocytes with surface receptors for IgE. Localization of intracellular granules immunoreactive for lactoferrin and CD18, a leukocyte adhesion molecule, unequivocally identified these cells as neutrophils. The low number of IgA-and IgG-immunoreactive B lymphocytes, T lymphocytes, and accessory immunocytes in the vomeronasal organ as well as the rest of the nasal cavity confirmed the absence of infection. We hypothesize that the operation of the vomeronasal pump induces repeated episodes of transient focal ischemia followed by reperfusion, which results in release of neutrophil chemoattractants and modulation of adhesion factors that regulate the extravasation and migration of neutrophils into the nonsensory epithelium. The distribution of immunoreactivity for interleukin 8 suggests that it is not the primary neutrophil chemoattractant in this system while that of CD18 suggests its active involvement in neutrophil extravasation. In addition to their role in immune surveillance, neutrophils may stimulate ion/water secretion into the vomeronasal lumen, affecting the perireceptor processes regulating stimulus access and clearance from the sensory epithelium.
Key words: Vomeronasal organ, Neutrophils, Perireceptor events, Rat (Sprague Dawley)
References
- Adams DR. The bovine vomeronasal organ. Arch Histol Jap. 1986;49:211–225. doi: 10.1679/aohc.49.211. [DOI] [PubMed] [Google Scholar]
- Adams DR, Wiekamp MD. The canine vomeronasal organ. J Anat. 1984;138:771–787. [PMC free article] [PubMed] [Google Scholar]
- Anttila HSI, Reitamo S, Erkko P, Ceska M, Moser B, Baggiolini M. Interleukin-8 immunoreactivity in the skin of healthy subjects and patients with palmoplantar pustulosis and psoriasis. J Invest Dermatol. 1992;98:96–101. doi: 10.1111/1523-1747.ep12495817. [DOI] [PubMed] [Google Scholar]
- Anwar ARE, Kay AB. Membrane receptors for IgG and complement (C4, C3b and C3d) on human eosinophils and neutrophils and their relation to eosinophilia. J Immunol. 1977;119:976–982. [PubMed] [Google Scholar]
- Arnaout MA, Spits H, Terhorst C, Pitt J, Todd RF., III Deficiency of a leukocyte surface glycoprotein (LFA-1) in two patients with Mol deficiency. Effects of cell activation on Mol/LFA-1 surface expression in normal and deficient leukocytes. J Clin Invest. 1984;74:1291–1300. doi: 10.1172/JCI111539. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Arnould T, Michiels C, Remacle J. Increased PMN adherence on endothelial cells after hypoxia: involvement of PAF, CD18/CD11b, and ICAM-1. Am J Physiol. 1993;264:C1102–C1110. doi: 10.1152/ajpcell.1993.264.5.C1102. [DOI] [PubMed] [Google Scholar]
- Baggiolini M, Clark-Lewis I. Interleukin-8, a chemotactic and inflammatory cytokine. FEBS Lett. 1992;307:97–101. doi: 10.1016/0014-5793(92)80909-z. [DOI] [PubMed] [Google Scholar]
- Basolo F, Calvo S, Fiore L, Conaldi PG, Falcone V, Toniolo A. Growth-stimulating activity of interleukin 6 on human mammary epithelial cells transfected with the int-2 gene. Cancer Res. 1993;53:2957–2960. [PubMed] [Google Scholar]
- Becker S, Koren HS, Henke DC. Interleukin-8 expression in normal nasal epithelium and its modulation by infection with respiratory syncytial virus and cytokines tumor necrosis factor, interleukin-1, and interleukin-6. Am J Respir Cell Mol Biol. 1993;8:20–27. doi: 10.1165/ajrcmb/8.1.20. [DOI] [PubMed] [Google Scholar]
- Bradding P, Feather IH, Wilson S, Bardin PG, Heusser CH, Holgate ST, Howarth PH. Immunolocalization of cytokines in the nasal mucosa of normal and perennial rhinitic subjects. The mast cell as a source of IL-4, IL-5, and IL-6 in human allergic mucosa inflammation. J Immunol. 1993;151:3853–3865. [PubMed] [Google Scholar]
- Brandtzaeg P. Cells producing immunoglobulins and other immune factors in human nasal mucosa. Protides Biol Fluids. 1985;32:363–366. [Google Scholar]
- Breipohl W, Bhatnagar KP, Mendoza A. Fine structure of the receptor-free epithelium in the vomeronasal organ of the rat. Cell Tissue Res. 1979;200:383–395. doi: 10.1007/BF00234850. [DOI] [PubMed] [Google Scholar]
- Butcher EC. Leukocyte-endothelial cell adhesion as an active multi-step process: a combinatorial mechanism for specificity and diversity in leukocyte targeting. In: Gupta S, Waldmann TA, editors. Mechanisms of Lymphocyte in Activation and Immune/Regulation IV: Cellular Communications. New York: Plenum Press; 1992. pp. 181–194. [DOI] [PubMed] [Google Scholar]
- Ciges M, Labella T, Gayoso M, Sanchez G. Ultrastructure of the organ of Jacobson and comparative study with olfactory mucosa. Acta Otolaryngol. 1977;83:47–58. doi: 10.3109/00016487709128812. [DOI] [PubMed] [Google Scholar]
- Eccles R. Autonomic innervation of the vomeronasal organ of the cat. Physiol Behav. 1982;28:1011–1015. doi: 10.1016/0031-9384(82)90168-8. [DOI] [PubMed] [Google Scholar]
- Enerback L, Miller HRP, Mayrhofer G. Methods for the identification and characterization of mast cells by light microscopy. In: Befus AD, Bienenstock J, Denburg JA, editors. Mast Cell Differentiation and Heterogeneity. New York: Raven Press; 1986. pp. 405–417. [Google Scholar]
- Entman ML, Michael L, Rossen RD, Dreyer WJ, Anderson DC, Taylor AA, Smith CW. Inflammation in the course of early myocardial ischemia. FASEB J. 1991;5:2529–2537. doi: 10.1096/fasebj.5.11.1868978. [DOI] [PubMed] [Google Scholar]
- Fanger MW, Goldstine SN, Shen L. Cytofluorographic analysis of receptors for IgA on human polymorphonuclear cells and monocytes and the correlation of receptor expression with phagocytosis. Mol Immunol. 1983;20:1019–1027. doi: 10.1016/0161-5890(83)90043-3. [DOI] [PubMed] [Google Scholar]
- Finger TE, Womble M, Silver WL. Innervation of the vomeronasal organ in rodents by peptidergic nerve fibers immunoreactive for substance P and calcitonin gene-related peptide (CGRP) (abstract) Chem Senses. 1989;14:698. [Google Scholar]
- Furriel RPM, Lucisano YM, Mantovani B. Precipitated immune complexes of IgM as well as of IgG can bind to rabbit polymorphonuclear leucocytes but only the immune complexes of IgG are readily phagocytosed. Immunology. 1992;75:528–534. [PMC free article] [PubMed] [Google Scholar]
- Gahmberg CG, Nortamo P, Kotovuori P, Tontti E, Li R, Valmu L, Autero M, Tolvanen M. Activation and binding of leukocyte integrins to their ligands. In: Gahmberg CG, Mandrup-Poulsen T, Wogensen Bach L, Hökfelt B, editors. Leukocyte adhesion. Basic and clinical aspects. Amsterdam: Elsevier; 1992. pp. 205–219. [Google Scholar]
- Gallin JI. Neutrophil specific granules: a fuse that ignites the inflammatory response. Clin Res. 1984;32:320–328. [PubMed] [Google Scholar]
- Gallin JI. Inflammation. In: Paul WE, editor. Fundamental Immunology. 3rd edn. New York: Raven; 1993. pp. 1015–1032. [Google Scholar]
- Getchell ML, Getchell TV. Immunohistochemical localization of components of the immune barrier in the olfactory mucosa of salamanders and rats. Anat Rec. 1991;231:358–374. doi: 10.1002/ar.1092310310. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Getchell ML, Shih G, Getchell TV. Expression of class I MHC-associated and virus-specific antigens by Bowman's glands in infected olfactory mucosa (abstract) Chem Senses. 1992;17:628–629. [Google Scholar]
- Getchell ML, Shih G, Getchell TV. Distribution of T lymphocytes in the olfactory mucosae of virus-antibody-free and conventional rats (abstract) Chem Senses. 1992;17:629. [Google Scholar]
- Getchell ML, Kulkarni AP, Getchell TV. Localization of immune system markers in adult human and rat vomeronasal organs (abstract) Chem Senses. 1993;18:560–561. [Google Scholar]
- Haines KA, Kolasinski SL, Cronstein BN, Reibman J, Gold LI, Weissmann G. Chemoattraction of neutrophils by substance P and transforming growth factor-β1 is inadequately explained by current models of lipid remodeling. J Immunol. 1993;151:1491–1499. [PubMed] [Google Scholar]
- Hamlin HE. Working mechanism for the liquid and gaseous intake and output of Jacobson's organ. Am J Physiol. 1929;91:201–205. [Google Scholar]
- Jaeschke H, Farhood A. Neutrophil and Kupffer cell-induced oxidant stress and ischemia-reperfusion injury in rat liver. Am J Physiol. 1991;260:G355–362. doi: 10.1152/ajpgi.1991.260.3.G355. [DOI] [PubMed] [Google Scholar]
- Jaeschke H, Farhood A, Smith CW. Neutrophils contribute to ischemia/reperfusion injury in rat liver in vivo. FASEB J. 1990;4:3355–3359. [PubMed] [Google Scholar]
- Jaeschke H, Farhood A, Bautista AP, Spolarics Z, Spitzer JJ, Smith CW. Functional inactivation of neutrophils with a Mac-1 (CD11b/CD18) monoclonal antibody protects against ischemia-reperfusion injury in rat liver. Hepatology. 1993;17:915–923. [PubMed] [Google Scholar]
- Johnson A, Josephson R, Hawke M. Clinical and histological evidence for the presence of the vomeronasal (Jacobson's) organ in adult humans. J Otolaryngol. 1985;14:71–79. [PubMed] [Google Scholar]
- Kraehenbuhl J-P, Neutra MR. Molecular and cellular basis of immune protection of mucosal surfaces. Physiol Rev. 1992;72:853–879. doi: 10.1152/physrev.1992.72.4.853. [DOI] [PubMed] [Google Scholar]
- Kubes P, Kanwar S, Niu X-F, Gaboury JP. Nitric oxide synthesis inhibition induces leukocyte adhesion via superoxide and mast cells. FASEB J. 1993;7:1293–1299. doi: 10.1096/fasebj.7.13.8405815. [DOI] [PubMed] [Google Scholar]
- Kulkarni AP, Getchell TV, Getchell ML. Neuronal nitric oxide synthase is localized in extrinsic nerves regulating perireceptor processes in the chemosensory nasal mucosae of rats and humans. J Comp Neurol. 1994;345:125–138. doi: 10.1002/cne.903450110. [DOI] [PubMed] [Google Scholar]
- Liu X-H, Kato H, Nakata N, Kogure K, Kato K. An immunohistochemical study of copper/zinc superoxide dismutase and manganese superoxide dismutase in rat hippocampus after transient cerebral ischemia. Brain Res. 1993;625:29–37. doi: 10.1016/0006-8993(93)90134-9. [DOI] [PubMed] [Google Scholar]
- Loo SK, Kanagasuntheram R. The vomeronasal organ in tree shrew and slow loris. J Anat. 1972;112:165–172. [PMC free article] [PubMed] [Google Scholar]
- Luckhaus G. Licht- und elektronenmikroskopische Befunde an der Lamina epithelialis des Vomeronasalorgans vom Kaninchen. Anat Anz. 1969;124:477–489. [PubMed] [Google Scholar]
- Macfarlane R, Moskowitz MA, Tasdemiroglu E, Wei EP, Kontos HA. Postischemic cerebral blood flow and neuroeffector mechanisms. Blood Vessels. 1991;28:46–51. doi: 10.1159/000158842. [DOI] [PubMed] [Google Scholar]
- Macfarlane R, Tasdemiroglu E, Moskowitz MA, Uemura Y, Wei EP, Kontos HA. Chronic trigeminal ganglionectomy or topical capsaicin application to pial vessels attenuates postocclusive cortical hyperemia but does not influence postischemic hypoperfusion. J Cereb Blood Flow Metab. 1991;11:261–271. doi: 10.1038/jcbfm.1991.58. [DOI] [PubMed] [Google Scholar]
- Madara JL, Parkos C, Colgan S, MacLeod J, Nash S, Matthews J, Delp C, Lencer W. Cl-secretion in a model intestinal epithelium induced by a neutrophil-derived secretagogue. J Clin Invest. 1992;89:1983–1944. doi: 10.1172/JCI115800. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Madara JL, Patapoff TW, Gillece-Castro B, Colgan SP, Parkos CA, Delp C, Mrsny RJ. 5′-Adenosine monophosphate is the neutrophil-derived paracrine factor that elicits chloride secretion for T84 intestinal epithelial cell monolayers. J Clin Invest. 1993;91:2320–2325. doi: 10.1172/JCI116462. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mellert TK, Getchell ML, Sparks L, Getchell TV. Characterization of the immune barrier in human olfactory mucosa. Otolaryngol Head Neck Surg. 1992;106:181–188. [PubMed] [Google Scholar]
- Meredith M. Stimulus access and other processes involved in nasal chemosensory function: potential substrates for neural and hormonal influence. In: Breipohl W, editor. Olfaction and Endocrine Regulation. London: IRL Press; 1982. pp. 223–236. [Google Scholar]
- Meredith M, O'Connell RJ. Efferent control of stimulus access to the hamster vomeronasal organ. J Physiol. 1979;286:301–316. doi: 10.1113/jphysiol.1979.sp012620. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moskowitz MA, Wei EP, Saito K, Kontos HA. Trigeminalectomy modifies pial arteriolar responses to hypertension or norepinephrine. Am J Physiol. 1988;255:H1–H6. doi: 10.1152/ajpheart.1988.255.1.H1. [DOI] [PubMed] [Google Scholar]
- Nash S, Stafford J, Madara JL. Effects of polymorphonuclear leukocyte transmigration on the barrier function of cultured intestinal epithelial cells. J Clin Invest. 1987;80:1104–1113. doi: 10.1172/JCI113167. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Parkos CA, Delp C, Arnaout MA, Madara JL. Neutrophil migration across a cultured intestinal epithelium. Dependence on a CD11b/CD18-mediated event and enhanced efficiency in physiological direction. J Clin Invest. 1991;88:1605–1612. doi: 10.1172/JCI115473. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Parkos CA, Colgan SP, Delp C, Arnaout MA, Madara JL. Neutrophil migration across a cultured epithelial monolayer elicits a biphasic resistance response representing sequential effects on transcellular and paracellular pathways. J Cell Biol. 1992;117:757–764. doi: 10.1083/jcb.117.4.757. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Poliquin JF, Crepeau J. Immune defence mechanisms of the nasal mucosa. J Otolaryngol. 1985;14:80–84. [PubMed] [Google Scholar]
- Rama Krishna NS, Getchell TV, Getchell ML. Differential expression of alpha, mu, and pi classes of glutathione S-transferases in chemosensory mucosae of rats during development. Cell Tissue Res. 1994;275:435–450. doi: 10.1007/BF00318813. [DOI] [PubMed] [Google Scholar]
- Ross GD. Function of neutrophils in host defense and immunity. In: Fornusek L, Vetvick V, editors. Immune system accessory cells. Boca Raton: CRC Press; 1992. pp. 263–286. [Google Scholar]
- Sekido N, Mukaida N, Harada A, Nakanishi I, Watanabe Y, Matsushima K. Prevention of lung reperfusion injury in rabbits by a monoclonal antibody against interleukin-8. Nature. 1993;365:654–657. doi: 10.1038/365654a0. [DOI] [PubMed] [Google Scholar]
- Silverman JD, Kruger L. Calcitonin-generelated-peptideimmunoreactive innervation of the rat head with emphasis on specialized sensory structures. J Comp Neurol. 1989;280:303–330. doi: 10.1002/cne.902800211. [DOI] [PubMed] [Google Scholar]
- Spicer SS, Lillie RD. Histochemical identification of basic proteins with Biebrich scarlet at alkaline pH. Stain Technol. 1961;36:365–370. [Google Scholar]
- Sprent J. T lymphocytes and the thymus. In: Paul WE, editor. Fundamental Immunology. 3rd edn. New York: Raven Press; 1993. pp. 75–109. [Google Scholar]
- Stensaas LJ, Lavker RM, Monti-Bloch L, Grosser BI, Berliner DL. Ultrastructure of the human vomeronasal organ. J Steroid Biochem Molec Biol. 1991;39:553–560. doi: 10.1016/0960-0760(91)90252-z. [DOI] [PubMed] [Google Scholar]
- Sung C-P, Arleth AJ, Aiyar N, Bhatnagar PK, Lysko PG, Feuerstein G. CGRP stimulates the adhesion of leukocytes to vascular endothelial cells. Peptides. 1992;13:429–434. doi: 10.1016/0196-9781(92)90071-a. [DOI] [PubMed] [Google Scholar]
- Truong M-J, Gruart V, Kusnierz J-P, Papin J-P, Loiseau S, Capron A, Capron M. Human neutrophils express immunoglobulin E (IgE)-binding proteins (Mac-2/εBP) of the S-type lectin family: role in IgE-dependent activation. J Exp Med. 1993;177:243–248. doi: 10.1084/jem.177.1.243. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Uyama O, Matsuyama T, Michishita H, Nakamura H, Sugita M. Protective effects of human recombinant superoxide dismutase on transient ischemic injury of CA1 neurons in gerbils. Stroke. 1992;23:75–81. doi: 10.1161/01.str.23.1.75. [DOI] [PubMed] [Google Scholar]
- Watanabe K, Harada H. Beta-adrenoceptor control of peroxidase synthesis in nasal glands. Ann Otol Rhinol Laryngol. 1990;99:581–585. doi: 10.1177/000348949009900717. [DOI] [PubMed] [Google Scholar]