Abstract
Rotaviruses are the leading cause of childhood diarrhea. The entry of rotaviruses into the host cell is a complex process that includes several interactions of the outer layer proteins of the virus with different cell surface molecules. The fact that neuraminidase treatment of the cells, or preincubation of the virus with sialic acid-containing compounds decrease the infectivity of some rotavirus strains, suggested that these viruses interact with sialic acid on the cell surface. The infectivity of some other rotavirus strains is not affected by neuraminidase treatment of the cells, and therefore they are considered neuraminidase-resistant. However, the current evidence suggests that even these neuraminidase-resistant strains might interact with sialic acids located in context different from that of the sialic acids used by the neuraminidase-sensitive strains. This review summarizes our current knowledge of the rotavirus-sialic acid interaction, its structural basis, the specificity with which distinct rotavirus isolates interact with sialic acid-containing compounds, and also the potential use of these compounds as therapeutic agents.
Keywords: Rotavirus, Sialic acid, Ganglioside, Glycolipid, Glycoconjugate
References
- 1.Parashar U.D., Hummelman E.G., Bresee J.S., Miller M.A., Glass R.I. Global illness and deaths caused by rotavirus disease in children. Emerg. Infect. Dis. 2003;9:565–572. doi: 10.3201/eid0905.020562. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 2.Cheever F.S., Mueller J.H. I. Manifestation, epidemiology, and attempts to transmit the disease. Epidemic diarrheal disease of suckling mice. J. Exp. Med. 1947;85:405–416. doi: 10.1084/jem.85.4.405. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 3.Adams W.R., Kraft L.M. Epizootic diarrhea of infant mice: identification of the etiologic agent. Science. 1963;141:359–360. doi: 10.1126/science.141.3578.359. [DOI] [PubMed] [Google Scholar]
- 4.Mebus C.A., Underdahl N.R., Rhodes M.B., Twiehaus M.J. Further studies on neonatal calf diarrhea virus. Proc. Annu. Meet. U. S. Anim. Health Assoc. 1969;73:97–99. [PubMed] [Google Scholar]
- 5.Bishop, R.F., Davidson, G.P., Holmes, I.H., Ruck, B.J.: Virus particles in epithelial cells of duodenal mucosa from children with viral gastroenteritis. Lancet. 1281–1283 (1973) [DOI] [PubMed]
- 6.Parashar U.D., Holman R.C., Cummings K.C., Staggs N.W., Curns A.T., Zimmerman C.M., Kaufman S.F., Lewis J.E., Vugia D.J., Powell K.E., Glass R.I. Trends in intussusception-associated hospitalizations and deaths among US infants. Pediatrics. 2000;106:1413–1421. doi: 10.1542/peds.106.6.1413. [DOI] [PubMed] [Google Scholar]
- 7.Prasad B.V., Burns J.W., Marietta E., Estes M.K., Chiu W. Localization of VP4 neutralization sites in rotavirus by three-dimensional cryo-electron microscopy. Nature. 1990;343:476–479. doi: 10.1038/343476a0. [DOI] [PubMed] [Google Scholar]
- 8.Lopez S., Arias C.F. Multistep entry of rotavirus into cells: a Versaillesque dance. Trends Microbiol. 2004;12:271–278. doi: 10.1016/j.tim.2004.04.003. [DOI] [PubMed] [Google Scholar]
- 9.Arias C.F., Romero P., Alvarez V., Lopez S. Trypsin activation pathway of rotavirus infectivity. Journal Of Virology. 1996;70(9):5832–5839. doi: 10.1128/jvi.70.9.5832-5839.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 10.Espejo R.T., Lopez S., Arias C. Structural polypeptides of simian rotavirus SA11 and the effect of trypsin. J. Virol. 1981;37:156–160. doi: 10.1128/jvi.37.1.156-160.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 11.Estes M.K., Graham D.Y., Mason B.B. Proteolytic enhancement of rotavirus infectivity: molecular mechanisms. J. Virol. 1981;39:879–888. doi: 10.1128/jvi.39.3.879-888.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 12.Clark S.M., Roth J.R., Clark M.L., Barnett B.B., Spendlove R.S. Trypsin enhancement of rotavirus infectivity: mechanism of enhancement. J. Virol. 1981;39:816–822. doi: 10.1128/jvi.39.3.816-822.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 13.Kaljot K.T., Shaw R.D., Rubin D.H., Greenberg H.B. Infectious rotavirus enters cells by direct cell membrane penetration, not by endocytosis. J. Virol. 1988;62:1136–1144. doi: 10.1128/jvi.62.4.1136-1144.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 14.Mossel E.C., Ramig R.F. A lymphatic mechanism of rotavirus extraintestinal spread in the neonatal mouse. J. Virol. 2003;77:12352–12356. doi: 10.1128/JVI.77.22.12352-12356.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 15.Ciarlet M., Crawford S.E., Cheng E., Blutt S.E., Rice D.A., Bergelson J.M., Estes M.K. VLA-2 (alpha2beta1) integrin promotes rotavirus entry into cells but is not necessary for rotavirus attachment. J. Virol. 2002;76:1109–1123. doi: 10.1128/JVI.76.3.1109-1123.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 16.Spence L., Fauvel M., Petro R., Bloch S. Lancet. 1976;2:1023. doi: 10.1016/s0140-6736(76)90860-6. [DOI] [PubMed] [Google Scholar]
- 17.Inaba Y., Sato K., Takahashi E., Kurogi H., Satoda K. Hemagglutination with Nebraska calf diarrhea virus. Microbiol. Immunol. 1977;21:531–534. doi: 10.1111/j.1348-0421.1977.tb00319.x. [DOI] [PubMed] [Google Scholar]
- 18.Kalica A.R., James J.D., Jr., Kapikian A.Z. Hemagglutination by simian rotavirus. J. Clin. Microbiol. 1978;7:314–315. doi: 10.1128/jcm.7.3.314-315.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 19.Kitaoka S., Suzuki H., Numazaki T., Sato T., Konno T., Ebina T., Ishida N., Nakagomi O., Nakagomi T. Hemagglutination by human rotavirus strains. J. Med. Virol. 1984;13:215–222. doi: 10.1002/jmv.1890130303. [DOI] [PubMed] [Google Scholar]
- 20.Shinozaki T., Fujii R., Sato K., Takahashi E., Ito Y., Inaba Y. Haemagglutinin from human reovirus-like agent. Lancet. 1978;1:877–878. doi: 10.1016/s0140-6736(78)90221-0. [DOI] [PubMed] [Google Scholar]
- 21.Fukudome K., Yoshie O., Konno T. Comparison of human, simian, and bovine rotaviruses for requirement of sialic acid in hemagglutination and cell absorption. Virology. 1989;172:196–205. doi: 10.1016/0042-6822(89)90121-9. [DOI] [PubMed] [Google Scholar]
- 22.Bastardo J.W., Holmes I.H. Attachment of SA-11 rotavirus to erythrocyte receptors. Infect. Immun. 1980;29:1134–1140. doi: 10.1128/iai.29.3.1134-1140.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 23.Keljo D.J., Smith A.K. Characterization of binding of simian rotavirus SA-11 to cultured epithelial cells. J. Pediatr. Gastroenterol Nutr. 1988;7:249–256. doi: 10.1097/00005176-198803000-00015. [DOI] [PubMed] [Google Scholar]
- 24.Mendez E., Arias C.F., Lopez S. Binding to sialic acids is not an essential step for the entry of animal rotaviruses to epithelial cells in culture. J. Virol. 1993;67:5253–5259. doi: 10.1128/jvi.67.9.5253-5259.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 25.Yolken R.H., Willoughby R., Wee S.B., Miskuff R., Vonderfecht S. Sialic acid glycoproteins inhibit in vitro and in vivo replication of rotaviruses. J. Clin. Invest. 1987;79:148–154. doi: 10.1172/JCI112775. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 26.Guo C.T., Nakagomi O., Mochizuki M., Ishida H., Kiso M., Ohta Y., Suzuki T., Miyamoto D., Hidari K.I., Suzuki Y. Ganglioside GM(1a) on the cell surface is involved in the infection by human rotavirus KUN and MO strains. J. Biochem. (Tokyo) 1999;126:683–688. doi: 10.1093/oxfordjournals.jbchem.a022503. [DOI] [PubMed] [Google Scholar]
- 27.Ciarlet M., Estes M.K. Human and most animal rotavirus strains do not require the presence of sialic acid on the cell surface for efficient infectivity. J. Gen. Virol. 1999;80:943–948. doi: 10.1099/0022-1317-80-4-943. [DOI] [PubMed] [Google Scholar]
- 28.Ciarlet M., Ludert J.E., Iturriza-Gomara M., Liprandi F., Gray J.J., Desselberger U., Estes M.K. Initial interaction of rotavirus strains with N-acetylneuraminic (sialic) acid residues on the cell surface correlates with VP4 genotype, not species of origin. J. Virol. 2002;76:4087–4095. doi: 10.1128/JVI.76.8.4087-4095.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 29.Fauvel M., Spence L., Babiuk L.A., Petro R., Bloch S. Hemagglutination and hemagglutination-inhibition studies with a strain of Nebraska calf diarrhea virus (bovine rotavirus) Intervirology. 1978;9:95–105. doi: 10.1159/000148927. [DOI] [PubMed] [Google Scholar]
- 30.Lee J., Yoo D., Redmond M.J., Attah-Poku S.K., van den Hurk J.V., Babiuk L.A. Characterization of the interaction between VP8 of bovine rotavirus C486 and cellular components on MA-104 cells and erythrocytes. Can. J. Vet. Res. 1998;62:56–62. [PMC free article] [PubMed] [Google Scholar]
- 31.Spence L., Fauvel M., Petro R., Babiuk L.A. Comparison of rotavirus strains by hemagglutination inhibition. Can. J. Microbiol. 1978;24:353–362. doi: 10.1139/m78-059. [DOI] [PubMed] [Google Scholar]
- 32.Nakagomi O., Mochizuki M., Aboudy Y., Shif I., Silberstein I., Nakagomi T. Hemagglutination by a human rotavirus isolate as evidence for transmission of animal rotaviruses to humans. J. Clin. Microbiol. 1992;30:1011–1013. doi: 10.1128/jcm.30.4.1011-1013.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 33.Hoshino Y., Wyatt R.G., Greenberg H.B., Kalica A.R., Flores J., Kapikian A.Z. Serological comparison of canine rotavirus with various simian and human rotaviruses by plaque reduction neutralization and hemagglutination inhibition tests. Infect. Immun. 1983;41:169–173. doi: 10.1128/iai.41.1.169-173.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 34.Mochizuki M., Nakagomi O. Haemagglutination by rotaviruses in relation to VP4 genotypes. Res. Virol. 1995;146:371–374. doi: 10.1016/0923-2516(96)80600-5. [DOI] [PubMed] [Google Scholar]
- 35.Lee J.B., Youn S.J., Nakagomi T., Park S.Y., Kim T.J., Song C.S., Jang H.K., Kim B.S., Nakagomi O. Isolation, serologic and molecular characterization of the first G3 caprine rotavirus. Arch. Virol. 2003;148:643–657. doi: 10.1007/s00705-002-0963-7. [DOI] [PubMed] [Google Scholar]
- 36.Ludert J.E., Feng N., Yu J.H., Broome R.L., Hoshino Y., Greenberg H.B. Genetic mapping indicates that VP4 is the rotavirus cell attachment protein in vitro and in vivo. J. Virol. 1996;70:487–493. doi: 10.1128/jvi.70.1.487-493.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 37.Hoshino Y., Sereno M.M., Midthun K., Flores J., Chanock R.M., Kapikian A.Z. Analysis by plaque reduction neutralization assay of intertypic rotaviruses suggests that gene reassortment occurs in vivo. J. Clin. Microbiol. 1987;25:290–294. doi: 10.1128/jcm.25.2.290-294.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 38.Hoshino Y., Wyatt R.G., Greenberg H.B., Kalica A.R., Flores J., Kapikian A.Z. Isolation and characterization of an equine rotavirus. J. Clin. Microbiol. 1983;18:585–591. doi: 10.1128/jcm.18.3.585-591.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 39.Fuentes Panana E.M., Lopez S., Gorziglia M., Arias C.F. Mapping the hemagglutination domain of rotaviruses. J. Virol. 1995;69:2629–2632. doi: 10.1128/jvi.69.4.2629-2632.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 40.Hoshino Y., Wyatt R.G., Greenberg H.B., Kalica A.R., Flores J., Kapikian A.Z. Isolation, propagation and characterization of a second equine rotavirus serotype. Infect. Immun. 1983;41:1031–1037. doi: 10.1128/iai.41.3.1031-1037.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 41.Sugiyama M., Goto K., Uemukai H., Mori Y., Ito N., Minamoto N. Attachment and infection to MA104 cells of avian rotaviruses require the presence of sialic acid on the cell surface. J. Vet. Med. Sci. 2004;66:461–463. doi: 10.1292/jvms.66.461. [DOI] [PubMed] [Google Scholar]
- 42.Greenberg H.B., Valdesuso J., van W.K., Midthun K., Walsh M., McAuliffe V., Wyatt R.G., Kalica A.R., Flores J., Hoshino Y. Production and preliminary characterization of monoclonal antibodies directed at two surface proteins of rhesus rotavirus. J. Virol. 1983;47:267–275. doi: 10.1128/jvi.47.2.267-275.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 43.Kalica A.R., Flores J., Greenberg H.B. Identification of the rotaviral gene that codes for hemagglutination and protease-enhanced plaque formation. Virology. 1983;125:194–205. doi: 10.1016/0042-6822(83)90073-9. [DOI] [PubMed] [Google Scholar]
- 44.Mackow E.R., Barnett J.W., Chan H., Greenberg H.B. The rhesus rotavirus outer capsid protein VP4 functions as a hemagglutinin and is antigenically conserved when expressed by a baculovirus recombinant. J. Virol. 1989;63:1661–1668. doi: 10.1128/jvi.63.4.1661-1668.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 45.Lizano M., Lopez S., Arias C.F. The amino-terminal half of rotavirus SA114fM VP4 protein contains a hemagglutination domain and primes for neutralizing antibodies to the virus. J. Virol. 1991;65:1383–1391. doi: 10.1128/jvi.65.3.1383-1391.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 46.Fiore L., Greenberg H.B., Mackow E.R. The VP8 fragment of VP4 is the rhesus rotavirus hemagglutinin. Virology. 1991;181:553–563. doi: 10.1016/0042-6822(91)90888-I. [DOI] [PubMed] [Google Scholar]
- 47.Isa P., Lopez S., Segovia L., Arias C.F. Functional and structural analysis of the sialic acid-binding domain of rotaviruses. J. Virol. 1997;71(9):6749–6756. doi: 10.1128/jvi.71.9.6749-6756.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 48.Dormitzer P.R., Sun Z.Y., Blixt O., Paulson J.C., Wagner G., Harrison S.C. Specificity and affinity of sialic acid binding by the rhesus rotavirus VP8∗ core. J. Virol. 2002;76:10512–10517. doi: 10.1128/JVI.76.20.10512-10517.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 49.Dormitzer P.R., Sun Z.Y., Wagner G., Harrison S.C. The rhesus rotavirus VP4 sialic acid binding domain has a galectin fold with a novel carbohydrate binding site. Embo. J. 2002;21:885–897. doi: 10.1093/emboj/21.5.885. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 50.Delorme C., Brussow H., Sidoti J., Roche N., Karlsson K.A., Neeser J.R., Teneberg S. Glycosphingolipid binding specificities of rotavirus: identification of a sialic acid-binding epitope. J. Virol. 2001;75:2276–2287. doi: 10.1128/JVI.75.5.2276-2287.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 51.Mendez E., Arias C.F., Lopez S. Interactions between the two surface proteins of rotavirus may alter the receptor-binding specificity of the virus. J. Virol. 1996;70:1218–1222. doi: 10.1128/jvi.70.2.1218-1222.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 52.Monnier, N.K., Dormitzer, P.R.: High resolution structural and functional studies of sialic acid binding variants of rotavirus VP8∗. 8th Interl Symp Double-Stranded Viruses, P2.8 (2003)
- 53.Willoughby R.E., Yolken R.H., Schnaar R.L. Rotaviruses specifically bind to the neutral glycosphingolipid asialo-GM1. J. Virol. 1990;64:4830–4835. doi: 10.1128/jvi.64.10.4830-4835.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 54.Willoughby R.E. Rotaviruses preferentially bind O-linked sialylglycoconjugates and sialomucins. Glycobiology. 1993;3:437–445. doi: 10.1093/glycob/3.5.437. [DOI] [PubMed] [Google Scholar]
- 55.Srnka C.A., Tiemeyer M., Gilbert J.H., Moreland M., Schweingruber H., de L.B., James P.G., Gant T., Willoughby R.E., Yolken RH, et al. Cell surface ligands for rotavirus: mouse intestinal glycolipids and synthetic carbohydrate analogs. Virology. 1992;190:794–805. doi: 10.1016/0042-6822(92)90917-E. [DOI] [PubMed] [Google Scholar]
- 56.Rolsma M.D., Kuhlenschmidt T.B., Gelberg H.B., Kuhlenschmidt M.S. Structure and function of a ganglioside receptor for porcine rotavirus. J. Virol. 1998;72:9079–9091. doi: 10.1128/jvi.72.11.9079-9091.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 57.Superti, F., Donelli, G.: Gangliosides as binding sites in SA-11 rotavirus infection of LLC-MK2 cells. J. Gen. Virol. (1991) [DOI] [PubMed]
- 58.Rolsma M.D., Gelberg HB., Kuhlenschmidt M.S. Assay for evaluation of rotavirus-cell interactions: identification of an enterocyte ganglioside fraction that mediates group A porcine rotavirus recognition. J. Virol. 1994;68:258–268. doi: 10.1128/jvi.68.1.258-268.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 59.Colarow L., Turini M., Teneberg S., Berger A. Characterization and biological activity of gangliosides in buffalo milk. Biochim. Biophys. Acta. 2003;1631:94–106. doi: 10.1016/s1388-1981(02)00360-8. [DOI] [PubMed] [Google Scholar]
- 60.Guerrero C.A., Zarate S., Corkidi G., Lopez S., Arias C.F. Biochemical characterization of rotavirus receptors in MA104 cells. J. Virol. 2000;74:9362–9371. doi: 10.1128/JVI.74.20.9362-9371.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 61.Jolly C.L., Beisner B.M., Ozser E., Holmes I.H. Non-lytic extraction and characterisation of receptors for multiple strains of rotavirus. Arch. Virol. 2001;146:1307–1323. doi: 10.1007/s007050170093. [DOI] [PubMed] [Google Scholar]
- 62.Elbein A.D. Inhibitors of glycoprotein synthesis. Methods Enzymol. 1983;98:135–154. doi: 10.1016/0076-6879(83)98144-2. [DOI] [PubMed] [Google Scholar]
- 63.Pan, Y.T., Elbein, A.D.: How can N-linked glycosylation and processing inhibitors be used to study carbohydrate synthesis and function. In: Glycoproteins edited by Montreuil J, Vliegenthart JFG, Schachter H (Elsevier, Amsterdam, 1995), pp. 415–454.
- 64.Roberts L. Vaccines. Rotavirus vaccines' second chance. Science. 2004;305:1890–1893. doi: 10.1126/science.305.5692.1890. [DOI] [PubMed] [Google Scholar]
- 65.Chen C.C., Baylor M., Bass D.M. Murine intestinal mucins inhibit rotavirus infection. Gastroenterology. 1993;105:84–92. doi: 10.1016/0016-5085(93)90013-3. [DOI] [PubMed] [Google Scholar]
- 66.Willoughby R.E., Yolken R.H. SA11 rotavirus is specifically inhibited by an acetylated sialic acid. J. Infect. Dis. 1990;161:116–119. doi: 10.1093/infdis/161.1.116. [DOI] [PubMed] [Google Scholar]
- 67.Yolken R.H., Ojeh C., Khatri I.A., Sajjan U, Forstner J.F. Intestinal mucins inhibit rotavirus replication in an oligosaccharide-dependent manner. J. Infect. Dis. 1994;169:1002–1006. doi: 10.1093/infdis/169.5.1002. [DOI] [PubMed] [Google Scholar]
- 68.Yolken R.H., Peterson J.A., Vonderfecht S.L., Fouts E.T., Midthun K., Newburg D.S. Human milk mucin inhibits rotavirus replication and prevents experimental gastroenteritis. J. Clin. Invest. 1992;90:1984–1991. doi: 10.1172/JCI116078. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 69.Reading P.C., Holmskov U., Anders E.M. Antiviral activity of bovine collectins against rotaviruses. Journal Of General Virology. 1998;79(9):2255–2263. doi: 10.1099/0022-1317-79-9-2255. [DOI] [PubMed] [Google Scholar]
- 70.Superti F., Siciliano R., Rega B., Giansanti F., Valenti P., Antonini G. Involvement of bovine lactoferrin metal saturation, sialic acid and protein fragments in the inhibition of rotavirus infection. Biochim. Biophys. Acta. 2001;1528:107–115. doi: 10.1016/s0304-4165(01)00178-7. [DOI] [PubMed] [Google Scholar]
- 71.Kvistgaard A.S., Pallesen L.T., Arias C.F., Lopez S., Petersen T.E., Heegaard CW, Rasmussen JT. Inhibitory effects of human and bovine milk constituents on rotavirus infections. J. Dairy. Sci. 2004;87:4088–96. doi: 10.3168/jds.S0022-0302(04)73551-1. [DOI] [PubMed] [Google Scholar]
- 72.Kiefel M.J., Beisner B., Bennett S., Holmes I.D., vonItzstein M. Synthesis and biological evaluation of N-acetylneuraminic acid-based rotavirus inhibitors. J. Med. Chem. 1996;39(6):1314–1320. doi: 10.1021/jm950611f. [DOI] [PubMed] [Google Scholar]
- 73.Fazli A., Bradley S.J., Kiefel M.J., Jolly C., Holmes I.H., von Itzstein M. Synthesis and biological evaluation of sialylmimetics as rotavirus inhibitors. J. Med. Chem. 2001;44:3292–3301. doi: 10.1021/jm0100887. [DOI] [PubMed] [Google Scholar]
- 74.Koketsu M., Nitoda T., Sugino H., Juneja L.R., Kim M., Yamamoto T., Abe N., Kajimoto T., Wong C.H. Synthesis of a novel sialic acid derivative (sialylphospholipid) as an antirotaviral agent. J. Med. Chem. 1997;40(21):3332–3335. doi: 10.1021/jm9701280. [DOI] [PubMed] [Google Scholar]
- 75.Takahashi K., Ohashi K., Abe Y., Mori S., Taniguchi K., Ebina T., Nakagomi O., Terada M., Shigeta S. Protective efficacy of a sulfated sialyl lipid (NMSO3) against human rotavirus-induced diarrhea in a mouse model. Antimicrob. Agents Chemother. 2002;46:420–424. doi: 10.1128/AAC.46.2.420-424.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 76.Urashima T., Saito T., Nakamura T., Messer M. Oligosaccharides of milk and colostrum in non-human mammals. Glycoconj J. 2001;18:357–371. doi: 10.1023/A:1014881913541. [DOI] [PubMed] [Google Scholar]