Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 2010 Sep 25;40(10):902–908. doi: 10.1007/s00595-009-4242-z

Myoblast transplantation: A possible surgical treatment for a severe pediatric disease

Beniamino Palmieri 1,, Jacques P Tremblay 2
PMCID: PMC7087795  PMID: 20872191

Abstract

Duchenne muscular dystrophy (DMD) is a genetic X-linked recessive orphan disease that affects approximately 1 in 3 500 male births. Boys with DMD have progressive and predictable muscle destruction due to the absence of dystrophin, a protein present under the muscle fiber membrane. This absence induces contraction-related membrane damage and activation of inflammatory necrosis and fibrosis, leading to cardiac/diaphragmatic failure and death. The authors support the therapeutic role of myoblast transplantation in DMD, and describe the history and rationale for such an approach.

Key words: Myoblast, Duchenne muscular dystrophy, Exon skipping, Tacrolimus, Cyclosporine

References

  • 1.Hoffman E.P., Brown R.H., Jr, Kunkel L.M. Dystrophin: the protein product of the Duchenne muscular dystrophy locus. Cell. 1987;51:919–928. doi: 10.1016/0092-8674(87)90579-4. [DOI] [PubMed] [Google Scholar]
  • 2.Petrof B.J. Molecular pathophysiology of myofiber injury in deficiencies of the dystrophin-glycoprotein complex. Am J Phys Med Rehabil. 2002;81:S162–S174. doi: 10.1097/00002060-200211001-00017. [DOI] [PubMed] [Google Scholar]
  • 3.Wynford-Thomas D. Replicative senescence: mechanisms and implications for human cancer. Pathol Biol (Paris) 2000;48:301–307. [PubMed] [Google Scholar]
  • 4.Blau H.M., Webster C., Pavlath G.K. Defective myoblasts identified in Duchenne muscular dystrophy. Proc Natl Acad Sci USA. 1983;80:4856–4860. doi: 10.1073/pnas.80.15.4856. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Péault B., Rudnicki M., Torrente Y., Cossu G., Tremblay J.P., Partridge T., et al. Stem and progenitor cells in skeletal muscle development, maintenance, and therapy. Mol Ther. 2007;15:867–877. doi: 10.1038/mt.sj.6300145. [DOI] [PubMed] [Google Scholar]
  • 6.Partridge T.A., Morgan J.E., Coulton G.R., Hoffman E.P., Kunkel L.M. Conversion of mdx myofibres from dystrophin-negative to -positive by injection of normal myoblasts. Nature. 1989;337:176–179. doi: 10.1038/337176a0. [DOI] [PubMed] [Google Scholar]
  • 7.Vilquin J.T., Asselin I., Guerette B., Kinoshita I., Lille S., Roy R., et al. Myoblast allotransplantation in mice: degree of success varies depending on the efficacy of various immunosuppressive treatments. Transplant Proc. 1994;26:3372–3373. [PubMed] [Google Scholar]
  • 8.Morgan J.E., Partridge T.A. Cell transplantation and gene therapy in muscular dystrophy. Bioessays. 1992;14:641–645. doi: 10.1002/bies.950140913. [DOI] [PubMed] [Google Scholar]
  • 9.Kinoshita I., Vilquin J.T., Guerette B., Asselin I., Roy R., Tremblay J.P. Very efficient myoblast allotransplantation in mice under FK506 immunosuppression. Muscle Nerve. 1994;17:1407–1415. doi: 10.1002/mus.880171210. [DOI] [PubMed] [Google Scholar]
  • 10.Kinoshita I., Roy R., Dugré F.J., Gravel C., Roy B., Goulet M., et al. Myoblast transplantation in monkeys: control of immune response by FK506. J Neuropathol Exp Neurol. 1996;55:687–697. doi: 10.1097/00005072-199606000-00002. [DOI] [PubMed] [Google Scholar]
  • 11.Skuk D., Roy B., Goulet M., Tremblay J.P. Successful myoblast transplantation in primates depends on appropriate cell delivery and induction of regeneration in the host muscle. Exp Neurol. 1999;155:22–30. doi: 10.1006/exnr.1998.6973. [DOI] [PubMed] [Google Scholar]
  • 12.Skuk D., Goulet M., Roy B., Tremblay J.P. Myoblast transplantation in whole muscle of nonhuman primates. J Neuropathol Exp Neurol. 2000;59:197–206. doi: 10.1093/jnen/59.3.197. [DOI] [PubMed] [Google Scholar]
  • 13.Skuk D., Tremblay J.P. Progress in myoblast transplantation: a potential treatment of dystrophies. Microsc Res Tech. 2000;48:213–222. doi: 10.1002/(SICI)1097-0029(20000201/15)48:3/4<213::AID-JEMT9>3.0.CO;2-Z. [DOI] [PubMed] [Google Scholar]
  • 14.Skuk D., Goulet M., Roy B., Tremblay J.P. Efficacy of myoblast transplantation in non-human primates following simple intramuscular cell injections: towards defining strategies applicable to humans. J Exp Neurrol. 2002;175:112–126. doi: 10.1006/exnr.2002.7899. [DOI] [PubMed] [Google Scholar]
  • 15.Gussoni E., Pavlath G.K., Lanctot A.M., Sharma K.R., Miller R.G., Steinman L., et al. Normal dystrophin transcripts detected in Duchenne muscular dystrophy patients after myoblast transplantation. Nature. 1992;356:435–438. doi: 10.1038/356435a0. [DOI] [PubMed] [Google Scholar]
  • 16.Miller R.G., Sharma K.R., Pavlath G.K., Gussoni E., Mynhier M., Lanctot A.M., et al. Myoblast implantation in Duchenne muscular dystrophy: the San Francisco study. Muscle Nerve. 1997;20:469–478. doi: 10.1002/(SICI)1097-4598(199704)20:4<469::AID-MUS10>3.0.CO;2-U. [DOI] [PubMed] [Google Scholar]
  • 17.Mendell J.R., Kissel J.T., Amato A.A., King W., Signore L., Prior T.W., et al. Myoblast transfer in the treatment of Duchenne’s muscular dystrophy [see comments] N Engl J Med. 1995;333:832–838. doi: 10.1056/NEJM199509283331303. [DOI] [PubMed] [Google Scholar]
  • 18.Karpati G., Ajdukovic D., Arnold D., Gledhill R.B., Guttmann R., Holland P., et al. Myoblast transfer in Duchenne muscular dystrophy. Ann Neurol. 1993;34:8–17. doi: 10.1002/ana.410340105. [DOI] [PubMed] [Google Scholar]
  • 19.Tremblay J.P., Malouin F., Roy R., Huard J., Bouchard J.P., Satoh A., et al. Results of a triple blind clinical study of myoblast transplantations without immunosuppressive treatment in young boys with Duchenne muscular dystrophy. Cell Transplant. 1993;2:99–112. doi: 10.1177/096368979300200203. [DOI] [PubMed] [Google Scholar]
  • 20.Tremblay J.P., Bouchard J.P., Malouin F., Théau D., Cottrell F., Collin H., et al. Myoblast transplantation between monozygotic twin girl carriers of Duchenne muscular dystrophy. Neuromuscul Disord. 1993;3:583–592. doi: 10.1016/0960-8966(93)90121-Y. [DOI] [PubMed] [Google Scholar]
  • 21.Huard J., Bouchard J.P., Roy R., Malouin F., Dansereau G., Labrecque C., et al. Human myoblast transplantation: preliminary results of 4 cases. Muscle Nerve. 1992;15:550–560. doi: 10.1002/mus.880150504. [DOI] [PubMed] [Google Scholar]
  • 22.Neumeyer A.M., Cros D., McKenna-Yasek D., Zawadzka A., Hoffman E.P., Pegoraro E., et al. Pilot study of myoblast transfer in the treatment of Becker muscular dystrophy. Neurology. 1998;51:589–592. doi: 10.1212/wnl.51.2.589. [DOI] [PubMed] [Google Scholar]
  • 23.Vilquin J.T., Kinoshita I., Roy R., Tremblay J.P. Cyclophosphamide immunosuppression does not permit successful myoblast allotransplantation in mouse. Neuromuscul Disord. 1995;5:511–517. doi: 10.1016/0960-8966(95)00011-B. [DOI] [PubMed] [Google Scholar]
  • 24.Gussoni E., Blau H.M., Kunkel L.M. The fate of individual myoblasts after transplantation into muscles of DMD patients. Nat Med. 1997;3:970–977. doi: 10.1038/nm0997-970. [DOI] [PubMed] [Google Scholar]
  • 25.Hong F., Lee J., Song J.W., Lee S.J., Ahn H., Cho J.J., et al. Cyclosporin A blocks muscle differentiation by inducing oxidative stress and inhibiting the peptidyl-prolyl-cis-trans isomerase activity of cyclophilin A: cyclophilin A protects myoblasts from cyclosporin A-induced cytotoxicity. FASEB J. 2002;16:1633–1635. doi: 10.1096/fj.02-0060fje. [DOI] [PubMed] [Google Scholar]
  • 26.Boulanger A., Asselin I., Roy R., Tremblay J.P. Role of non-major histocompatibility complex antigens in the rejection of transplanted myoblasts. Transplantation. 1997;63:893–899. doi: 10.1097/00007890-199703270-00016. [DOI] [PubMed] [Google Scholar]
  • 27.Skuk D., Caron N.J., Goulet M., Roy B., Tremblay J.P. Resetting the problem of cell death following muscle-derived cell transplantation: detection, dynamics and mechanisms. J Neuropathol Exp Neurol. 2003;62:951–967. doi: 10.1093/jnen/62.9.951. [DOI] [PubMed] [Google Scholar]
  • 28.Hodgetts S.I., Grounds M.D. Complement and myoblast transfer therapy: donor myoblast survival is enhanced following depletion of host complement C3 using cobra venom factor, but not in the absence of C5. Immunol Cell Biol. 2001;79:231–239. doi: 10.1046/j.1440-1711.2001.01006.x. [DOI] [PubMed] [Google Scholar]
  • 29.Beauchamp J.R., Morgan J.E., Pagel C.N., Partridge T.A. Dynamics of myoblast transplantation reveal a discrete minority of precursors with stem cell-like properties as the myogenic source. J Cell Biol. 1999;144:1113–1122. doi: 10.1083/jcb.144.6.1113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Fan Y., Maley M., Beilharz M., Grounds M. Rapid death of injected myoblasts in myoblast transfer therapy. Muscle Nerve. 1996;19:853–860. doi: 10.1002/(SICI)1097-4598(199607)19:7<853::AID-MUS7>3.0.CO;2-8. [DOI] [PubMed] [Google Scholar]
  • 31.Skuk D., Paradis M., Goulet M., Tremblay J.P. Ischemic central necrosis in pockets of transplanted myoblasts in nonhuman primates: implications for cell-transplantation strategies. Transplantation. 2007;84:1307–1315. doi: 10.1097/01.tp.0000288322.94252.22. [DOI] [PubMed] [Google Scholar]
  • 32.Karpati G., Ajdukovic D., Arnold D., Gledhill R.B., Guttmann R., Holland P., et al. Myoblast transfer in Duchenne muscular dystrophy [see comments] Ann Neurol. 1993;34:8–17. doi: 10.1002/ana.410340105. [DOI] [PubMed] [Google Scholar]
  • 33.Skuk D., Goulet M., Roy B., Chapdelaine P., Bouchard J.P., Roy R., et al. Dystrophin expression in muscles of Duchenne muscular dystrophy patients after high-density injections of normal myogenic cells. J Neuropathol Exp Neurol. 2006;65:371–386. doi: 10.1097/01.jnen.0000218443.45782.81. [DOI] [PubMed] [Google Scholar]
  • 34.Skuk D., Goulet M., Roy B., Piette V., Côté C.H., Chapdelaine P., et al. First test of a “high-density injection” protocol for myogenic cell transplantation throughout large volumes of muscles in a Duchenne muscular dystrophy patient: eighteen months follow-up. Neuromuscul Disord. 2007;17:38–46. doi: 10.1016/j.nmd.2006.10.003. [DOI] [PubMed] [Google Scholar]
  • 35.Morgan J.E., Pagel C.N., Sherratt T., Partridge T.A. Long-term persistence and migration of myogenic cells injected into preirradiated muscles of mdx mice. J Neurol Sci. 1993;115:191–200. doi: 10.1016/0022-510X(93)90224-M. [DOI] [PubMed] [Google Scholar]
  • 36.Yao S.N., Kurachi K. Implanted myoblasts not only fuse with myofibers but also survive as muscle precursor cells. J Cell Sci. 1993;105:957–963. doi: 10.1242/jcs.105.4.957. [DOI] [PubMed] [Google Scholar]
  • 37.Ehrhardt J., Brimah K., Adkin C., Partridge T., Morgan J. Human muscle precursor cells give rise to functional satellite cells in vivo. Neuromuscul Disord. 2007;17:631–638. doi: 10.1016/j.nmd.2007.04.009. [DOI] [PubMed] [Google Scholar]
  • 38.Wang Z., Allen J.M., Riddell S.R., Gregorevic P., Storb R., Tapscott S.J., et al. Immunity to adeno-associated virus-mediated gene transfer in a random-bred canine model of Duchenne muscular dystrophy. Hum Gene Ther. 2007;18:18–26. doi: 10.1089/hum.2006.093. [DOI] [PubMed] [Google Scholar]
  • 39.van Deutekom J.C., Bremmer-Bout M., Janson A.A., Ginjaar I.B., Baas F., den Dunnen J.T., et al. Antisense-induced exon skipping restores dystrophin expression in DMD patient derived muscle cells. Hum Mol Genet. 2001;10:1547–1554. doi: 10.1093/hmg/10.15.1547. [DOI] [PubMed] [Google Scholar]
  • 40.Aartsma-Rus A., Janson A.A., Kaman W.E., Bremmer-Bout M., van Ommen G.J., den Dunnen J.T., et al. Antisense-induced multiexon skipping for Duchenne muscular dystrophy makes more sense. Am J Hum Genet. 2004;74:83–92. doi: 10.1086/381039. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41.Wells K.E., Fletcher S., Mann C.J., Wilton S.D., Wells D.J. Enhanced in vivo delivery of antisense oligonucleotides to restore dystrophin expression in adult mdx mouse muscle. FEBS Lett. 2003;552:145–149. doi: 10.1016/S0014-5793(03)00904-9. [DOI] [PubMed] [Google Scholar]
  • 42.Moulton H.M., Fletcher S., Neuman B.W., McClorey G., Stein D.A., Abes S., et al. Cell-penetrating peptide-morpholino conjugates alter pre-mRNA splicing of DMD (Duchenne muscular dystrophy) and inhibit murine coronavirus replication in vivo. Biochem Soc Trans. 2007;35:826–828. doi: 10.1042/BST0350053. [DOI] [PubMed] [Google Scholar]
  • 43.Adams A.M., Harding P.L., Iversen P.L., Coleman C., Fletcher S., Wilton S.D. Antisense oligonucleotide induced exon skipping and the dystrophin gene transcript: cocktails and chemistries. BMC Mol Biol. 2007;8:57. doi: 10.1186/1471-2199-8-57. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 44.Fletcher S., Honeyman K., Fall A.M., Harding P.L., Johnsen R.D., Steinhaus J.P., et al. Morpholino oligomer-mediated exon skipping averts the onset of dystrophic pathology in the mdx mouse. Mol Ther. 2007;15:1587–1592. doi: 10.1038/sj.mt.6300245. [DOI] [PubMed] [Google Scholar]
  • 45.Sampaolesi M., Blot S., D’Antona G., Granger N., Tonlorenzi R., Innocenzi A., et al. Mesoangioblast stem cells ameliorate muscle function in dystrophic dogs. Nature. 2006;444:574–579. doi: 10.1038/nature05282. [DOI] [PubMed] [Google Scholar]
  • 46.Brussee V., Merly F., Tardif F., Tremblay J.P. Normal myoblast implantation in MDX mice prevents muscle damage by exercise. Biochem Biophys Res Commun. 1998;250:321–327. doi: 10.1006/bbrc.1998.9276. [DOI] [PubMed] [Google Scholar]
  • 47.Ellis D. Clinical use of tacrolimus (FK-506) in infants and children with renal transplants. Pediatr Nephrol. 1995;9:487–494. doi: 10.1007/BF00866738. [DOI] [PubMed] [Google Scholar]
  • 48.Jain A., Mazariegos G., Kashyap R., Green M., Gronsky C., Starzl T.E., et al. Comparative long-term evaluation of tacrolimus and cyclosporine in pediatric liver transplantation. Transplantation. 2000;70:617–625. doi: 10.1097/00007890-200008270-00015. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 49.English R.F., Pophal S.A., Bacanu S.A., Fricker J., Boyle G.J., Ellis D., et al. Long-term comparison of tacrolimus- and cyclosporine-induced nephrotoxicity in pediatric heart-transplant recipients. Am J Transplant. 2002;2:769–773. doi: 10.1034/j.1600-6143.2002.20811.x. [DOI] [PubMed] [Google Scholar]
  • 50.Hasenbein W., Albani J., Englert C., Spehr A., Grabhorn E., Kemper M.J., et al. Long-term evaluation of cyclosporine and tacrolimus based immunosuppression in pediatric liver transplantation. Pediatr Transplant. 2006;10:938–942. doi: 10.1111/j.1399-3046.2006.00580.x. [DOI] [PubMed] [Google Scholar]
  • 51.Atkison P., Joubert G., Barron A., Grant D., Paradis K., Seidman E., et al. Hypertrophic cardiomyopathy associated with tacrolimus in paediatric transplant patients. Lancet. 1995;345:894–896. doi: 10.1016/S0140-6736(95)90011-X. [DOI] [PubMed] [Google Scholar]
  • 52.Filler G. Calcineurin inhibitors in pediatric renal transplant recipients. Paediatr Drugs. 2007;9:165–174. doi: 10.2165/00148581-200709030-00005. [DOI] [PubMed] [Google Scholar]
  • 53.Asante-Korang A., Boyle G.J., Webber S.A., Miller S.A., Fricker F.J. Experience of FK506 immune suppression in pediatric heart transplantation: a study of long-term adverse effects. J Heart Lung Transplant. 1996;15:415–422. [PubMed] [Google Scholar]
  • 54.Camirand G., Stephan L., Rousseau J., Sackett M.K., Caron N.J., Mills P., et al. Central tolerance to myogenic cell transplants does not include muscle neoantigens. Transplantation. 2008;85:1791–1801. doi: 10.1097/TP.0b013e31817726bc. [DOI] [PubMed] [Google Scholar]
  • 55.Stephan L., Pichavant C., Bouchentouf M., Mills P., Camirand G., Tagmouti S., et al. Induction of tolerance across fully mismatched barriers by a nonmyeloablative treatment excluding antibodies or irradiation use. Cell Transplant. 2006;15:835–846. doi: 10.3727/000000006783981521. [DOI] [PubMed] [Google Scholar]
  • 56.Camirand G., Rousseau J., Ducharme M.E., Rothstein D.M., Tremblay J.P. Novel Duchenne muscular dystrophy treatment through myoblast transplantation tolerance with anti-CD45RB, anti-CD154 and mixed chimerism. Am J Transplant. 2004;4:1255–1265. doi: 10.1111/j.1600-6143.2004.00501.x. [DOI] [PubMed] [Google Scholar]

Articles from Surgery Today are provided here courtesy of Nature Publishing Group

RESOURCES