Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 2008 Sep 21;73(9):957–964. doi: 10.1134/S0006297908090010

Aconitate hydratase of mammals under oxidative stress

L V Matasova 1,, T N Popova 1
PMCID: PMC7087844  PMID: 18976211

Abstract

Data on the structure, functions, regulation of activity, and expression of cytosolic and mitochondrial aconitate hydratase isoenzymes of mammals are reviewed. The role of aconitate hydratase and structurally similar iron-regulatory protein in maintenance of homeostasis of cell iron is described. Information on modifications of the aconitate hydratase molecule and changes in expression under oxidative stress is generalized. The role of aconitate hydratase in the pathogenesis of some diseases is considered.

Key words: aconitase, citrate, oxidative stress, iron, iron-regulatory proteins, regulation of activity and expression

Abbreviations

AH

aconitate hydratase

cAH

cytoplasmic aconitase isoenzyme

HRM

hemoregulatory motif

IL

interleukins

IRE

iron-sensitive elements

IRP

iron-regulatory proteins

LIP

labile iron pool

mAH

mitochondrial aconitase isoenzyme

MtFt

mitochondrial ferritin

ROS

reactive oxygen species

SOD

superoxide dismutase

TCA cycle

tricarboxylic acid cycle

TNF-α

tumor necrosis factor-α

Footnotes

Original Russian Text © L. V. Matasova, T. N. Popova, 2008, published in Biokhimiya, 2008, Vol. 73, No. 9, pp. 1189–1198.

References

  • 1.Osipov A. N., Azizova O. A., Vladimirov Yu. A. Uspekhi Biol. Khim. 1990;31:180–208. [Google Scholar]
  • 2.Gardner P. R., Nguyen D. M., White C. W. Proc. Natl. Acad. Sci. USA. 1994;91:12248–12252. doi: 10.1073/pnas.91.25.12248. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Skulachev V. P. Oxygen and Phenomena of Programmed Death. Moscow: Institute of Biomedical Chemistry, Russian Academy of Medical Sciences; 2000. [Google Scholar]
  • 4.Vasquez-Vivar J., Kalyanaraman B., Kennedy M. C. J. Biol. Chem. 2000;275:14064–14069. doi: 10.1074/jbc.275.19.14064. [DOI] [PubMed] [Google Scholar]
  • 5.Korshunov S., Skulachev V. P., Starkov A. A. FEBS Lett. 1997;416:15–18. doi: 10.1016/S0014-5793(97)01159-9. [DOI] [PubMed] [Google Scholar]
  • 6.Skulachev V. P. Mol. Aspects Med. 1999;20:139–184. doi: 10.1016/S0098-2997(99)00008-4. [DOI] [PubMed] [Google Scholar]
  • 7.Armstrong J. S., Whiteman M., Yang H., Jones D. P. BioEssays. 2004;26:894–900. doi: 10.1002/bies.20071. [DOI] [PubMed] [Google Scholar]
  • 8.Slaughter C. A., Mophinson D. A., Harris H. Ann. Hum. Genet. 1977;40:385–401. [PubMed] [Google Scholar]
  • 9.Sholze H. Biochim. Biophys. Acta. 1983;746:133–137. doi: 10.1016/0167-4838(83)90066-3. [DOI] [PubMed] [Google Scholar]
  • 10.Povey S., Slaughter C. A., Wilson D. E., Gormley I. P., Buckton K. E., Perry P., Bobrow M. Hum. Genet. 1976;39:413–422. doi: 10.1111/j.1469-1809.1976.tb00145.x. [DOI] [PubMed] [Google Scholar]
  • 11.Mirel D. B., Marder K., Graziano J., Freyer G., Zhao Q., Mayeux R., Wilhelmsen K. C. Gene. 1998;213:205–218. doi: 10.1016/S0378-1119(98)00188-7. [DOI] [PubMed] [Google Scholar]
  • 12.Rouault T. A., Stout C. D., Kaptain S., Harford J. B., Klausner R. D. Cell. 1991;64:881–883. doi: 10.1016/0092-8674(91)90312-M. [DOI] [PubMed] [Google Scholar]
  • 13.Hirling H., Henderson B. R., Kuhn L. C. EMBO J. 1994;13:453–461. doi: 10.1002/j.1460-2075.1994.tb06280.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Medvedeva L. V., Popova T. N., Artyukhov V. G., Matasova L. V., Vashanova O. N. System Analysis and Control in Biomedical Systems. 2002;1:22–26. [Google Scholar]
  • 15.Walden W. E. Proc. Natl. Acad. Sci. USA. 2002;99:4138–4140. doi: 10.1073/pnas.082108799. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Dakubo G. D., Parr R. L., Costello L. C., Franklin R. B., Thayer R. E. J. Clin. Pathol. 2006;59:10–16. doi: 10.1136/jcp.2005.027664. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Juang H. H. Mol. Genet. Metab. 2004;81:244–252. doi: 10.1016/j.ymgme.2003.12.009. [DOI] [PubMed] [Google Scholar]
  • 18.Wlodek D., Gonzales M. J. Theor. Biol. 2003;225:33–44. doi: 10.1016/S0022-5193(03)00218-2. [DOI] [PubMed] [Google Scholar]
  • 19.Vinogradov A. D., Kotlyar A. B., Burov V. I., Belikova Y. O. Adv. Enzyme Regul. 1989;28:271–280. doi: 10.1016/0065-2571(89)90076-9. [DOI] [PubMed] [Google Scholar]
  • 20.Beach R. L., Aogaichi T. P., Gerhard W. E. J. Biol. Chem. 1977;252:2702–2709. [PubMed] [Google Scholar]
  • 21.Barnes S. J., Weitzman P. D. J. FEBS Lett. 1986;201:267–270. doi: 10.1016/0014-5793(86)80621-4. [DOI] [PubMed] [Google Scholar]
  • 22.Tokheim A. M., Martin B. L. Proteins. 2006;64:28–33. doi: 10.1002/prot.20996. [DOI] [PubMed] [Google Scholar]
  • 23.Shadel G. S. Trends Biochem. Sci. 2005;30:294–296. doi: 10.1016/j.tibs.2005.04.007. [DOI] [PubMed] [Google Scholar]
  • 24.Chen X. J., Wang X., Kaufman B. A., Butow R. A. Science. 2005;307:714–717. doi: 10.1126/science.1106391. [DOI] [PubMed] [Google Scholar]
  • 25.Wang Y., Bogenhagen D. F. J. Biol. Chem. 2006;281:25791–25802. doi: 10.1074/jbc.M604501200. [DOI] [PubMed] [Google Scholar]
  • 26.Shi S. T., Lai M. M. Curr. Top. Microbiol. Immunol. 2005;287:95–131. doi: 10.1007/3-540-26765-4_4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Nanda S. K., Leibowitz J. L. J. Virol. 2001;75:3352–3362. doi: 10.1128/JVI.75.7.3352-3362.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Checma-Dhadli S., Halperin M. L. Can. J. Biochem. 1976;54:171–177. doi: 10.1139/o76-025. [DOI] [PubMed] [Google Scholar]
  • 29.McGahan M. C., Harned J., Mukunnemkeril M., Goralska M., Fleisher L. N., Ferrell J. Am. J. Physiol. 2005;288:1117–1124. doi: 10.1152/ajpcell.00444.2004. [DOI] [PubMed] [Google Scholar]
  • 30.Villafranca J. J., Mildvan A. S. J. Biol. Chem. 1971;246:5791–5798. [PubMed] [Google Scholar]
  • 31.Andreeshcheva E. M., Popova T. N., Artyukhov V. G., Matasova L. V. Byul. Eksp. Biol. Med. 2004;137:399–402. doi: 10.1023/b:bebm.0000035127.87181.57. [DOI] [PubMed] [Google Scholar]
  • 32.Juang H. H. Mol. Cell Biochem. 2004;265:185–194. doi: 10.1023/B:MCBI.0000044395.59739.1f. [DOI] [PubMed] [Google Scholar]
  • 33.Costello L. C., Liu Y., Franklin R. B., Kennedy M. C. J. Biol. Chem. 1997;272:28875–28881. doi: 10.1074/jbc.272.46.28875. [DOI] [PubMed] [Google Scholar]
  • 34.Chen H., Davidson T., Singleton S., Garrick M. D., Costa M. Toxicol. Appl. Pharmacol. 2005;206:275–287. doi: 10.1016/j.taap.2004.11.011. [DOI] [PubMed] [Google Scholar]
  • 35.Zheng W., Ren S., Graziano J. H. Brain Res. 1998;799:334–342. doi: 10.1016/S0006-8993(98)00481-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Zheng W., Zhao Q., Slavkovich V., Aschner M., Graziano J. H. Brain Res. 1999;833:125–132. doi: 10.1016/S0006-8993(99)01558-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37.Robbins A. H., Stout C. D. Proc. Natl. Acad. Sci. USA. 1989;86:3639–3643. doi: 10.1073/pnas.86.10.3639. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38.Tsui K. H., Chang P. L., Juang H. H. Asian J. Androl. 2006;8:307–315. doi: 10.1111/j.1745-7262.2006.00139.x. [DOI] [PubMed] [Google Scholar]
  • 39.Stallings W. C., Monti C. T., Belvedere J. F., Preston R. K., Glusker J. P. Arch. Biochem. Biophys. 1980;203:65–72. doi: 10.1016/0003-9861(80)90154-X. [DOI] [PubMed] [Google Scholar]
  • 40.Eanes R. J., Kun E. Mol. Pharmacol. 1974;10:130–139. [PubMed] [Google Scholar]
  • 41.Robbins A. H., Stout C. D. J. Biol. Chem. 1985;260:2328–2333. [PubMed] [Google Scholar]
  • 42.Ruffo A. Bull. Soc. Chem. Biol. 1967;49:461–476. [PubMed] [Google Scholar]
  • 43.Gawron O. S., Kennedy M. C., Rauner R. A. Biochem. J. 1974;143:717–722. doi: 10.1042/bj1430717. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 44.Boquist L., Ericsson I. FEBS Lett. 1984;178:245–248. doi: 10.1016/0014-5793(84)80609-2. [DOI] [PubMed] [Google Scholar]
  • 45.Ogata H., Nakamura S. Bull. Yamaguchi Med. Sci. 1975;22:239–252. [Google Scholar]
  • 46.Melzi E., Gian L., Moratti R. Atti. Acad. Naz. Lincei. 1980;69:87–94. [Google Scholar]
  • 47.Kim S. Y., Marekov L., Bubber P., Browne S. E., Stavrovskaya I., Lee J., Steinert P. M., Blass J. P., Beal M. F., Gibson G. E., Cooper A. J. Neurochem. Res. 2005;30:1245–1255. doi: 10.1007/s11064-005-8796-x. [DOI] [PubMed] [Google Scholar]
  • 48.Bulteau A.-L., Lundberg K. C., Ikeda-Saito M., Isaya G., Szweda L. I. Proc. Natl. Acad. Sci. USA. 2005;102:5987–5991. doi: 10.1073/pnas.0501519102. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 49.Gardner P. R., Fridovich I. J. Biol. Chem. 1992;267:8757–8763. [PubMed] [Google Scholar]
  • 50.Kellehera J. A., Chan T. Y. Y., Chan P. H., Gregory G. A. Brain Res. 1996;726:167–173. doi: 10.1016/0006-8993(96)00328-9. [DOI] [PubMed] [Google Scholar]
  • 51.Cooper C. E. Biochim. Biophys. Acta. 1999;1411:290–309. doi: 10.1016/S0005-2728(99)00021-3. [DOI] [PubMed] [Google Scholar]
  • 52.Andersson U., Leighton B., Young M. E., Blomstrand E., Newsholme E. A. Biochem. Biophys. Res. Commun. 1998;249:512–516. doi: 10.1006/bbrc.1998.9171. [DOI] [PubMed] [Google Scholar]
  • 53.Oliveira L., Drapier J. C. Proc. Natl. Acad. Sci. USA. 2000;97:6550–6555. doi: 10.1073/pnas.120571797. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 54.Cheung P.-Y., Danial H., Jong J., Schulz R. Arch. Biochem. Biophys. 1998;350:104–108. doi: 10.1006/abbi.1997.0496. [DOI] [PubMed] [Google Scholar]
  • 55.Han D., Canali R., Garcia J., Aguilera R., Gallaher T. K., Cadenas E. Biochemistry. 2005;44:11986–11996. doi: 10.1021/bi0509393. [DOI] [PubMed] [Google Scholar]
  • 56.Csont T., Viappiani S., Sawicka J., Slee S., Altarejos J. Y., Batinic-Haberle I., Schulz R. J. Mol. Cell Cardiol. 2005;39:833–840. doi: 10.1016/j.yjmcc.2005.07.010. [DOI] [PubMed] [Google Scholar]
  • 57.Yarian C. S., Toroser D., Sohal R. S. Mech. Ageing Dev. 2006;127:79–84. doi: 10.1016/j.mad.2005.09.028. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 58.Bota D. A., Davies K. J. Nat. Cell Biol. 2002;4:674–680. doi: 10.1038/ncb836. [DOI] [PubMed] [Google Scholar]
  • 59.Bouton C. Cell Mol. Life Sci. 1999;55:1043–1053. doi: 10.1007/s000180050355. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 60.Hanson E. S., Leibold E. A. Gene Expr. 1999;7:367–376. [PMC free article] [PubMed] [Google Scholar]
  • 61.Cairo G., Pietrangelo A. Biochem. J. 2000;352:241–250. doi: 10.1042/0264-6021:3520241. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 62.Fillebeen C., Pantopoulos K. Redox Rep. 2002;7:15–22. doi: 10.1179/135100002125000136. [DOI] [PubMed] [Google Scholar]
  • 63.Crichton R. R., Wilmet S., Legssyer R., Ward R. J. J. Inorg. Biochem. 2002;91:9–18. doi: 10.1016/S0162-0134(02)00461-0. [DOI] [PubMed] [Google Scholar]
  • 64.Eisenstein R. S., Ross K. L. J. Nutr. 2003;133:1510S–1516S. doi: 10.1093/jn/133.5.1510S. [DOI] [PubMed] [Google Scholar]
  • 65.Beutler E. Cell Biol. 2004;306:2051–2053. doi: 10.1126/science.1107224. [DOI] [PubMed] [Google Scholar]
  • 66.Pantopoulos K. Ann. N. Y. Acad. Sci. 2004;1012:1–13. doi: 10.1196/annals.1306.001. [DOI] [PubMed] [Google Scholar]
  • 67.Rouault T. A. Nat. Chem. Biol. 2006;2:406–414. doi: 10.1038/nchembio807. [DOI] [PubMed] [Google Scholar]
  • 68.Zorov D. B., Filburn C. R., Klotz L. O., Zweier J. L., Sollott S. J. J. Exp. Med. 2000;192:1001–1014. doi: 10.1084/jem.192.7.1001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 69.Piszkiewiez D., Gawron O., Sutherland J. C. Biochemistry. 1981;20:363–366. doi: 10.1021/bi00505a021. [DOI] [PubMed] [Google Scholar]
  • 70.Beinert H. Cytochrome System: Mol. Biol. Bio-Energ. Prac. New York-London: UNESCO Int. Workshop; 1987. pp. 451–458. [Google Scholar]
  • 71.Kennedy M. C., Beinert H., Lauble H. J. Jnorg. Chem. 1991;43:234–240. [Google Scholar]
  • 72.Telser J., Emptage M. H., Merkle H., Kennedy M. C., Beinert H., Hoffman B. M. J. Biol. Chem. 1986;261:4840–4846. [PubMed] [Google Scholar]
  • 73.Gunshin H., Allerson C. R., Polycarpou-Schwarz M., Rofts A., Rogers J. T., Kishi F., Hentze M. W., Rouault T. A., Andrews N. C., Hediger M. A. FEBS Lett. 2001;509:309–316. doi: 10.1016/S0014-5793(01)03189-1. [DOI] [PubMed] [Google Scholar]
  • 74.Eisenstein R. S., Barton H. A., Pettingell W. H., Jr., Bomforda A. B. Arch. Biochem. Biophys. 1997;343:81–91. doi: 10.1006/abbi.1997.0144. [DOI] [PubMed] [Google Scholar]
  • 75.Starzynski R. R., Gralak M. A., Smuda E., Lipinski P. Cell Mol. Biol. Lett. 2004;9:651–664. [PubMed] [Google Scholar]
  • 76.Campanella A., Levi S., Cairo G., Biasiotto G., Arosio P. Biochemistry. 2004;43:195–204. doi: 10.1021/bi035386f. [DOI] [PubMed] [Google Scholar]
  • 77.Brown N. M., Kennedy M. C., Antholine W. E., Eisenstein R. S., Walden W. E. J. Biol. Chem. 2002;277:7246–7254. doi: 10.1074/jbc.M110282200. [DOI] [PubMed] [Google Scholar]
  • 78.Gosiewska A., Mahmoodian F., Peterkofsky B. Arch. Biochem. Biophys. 1996;325:295–303. doi: 10.1006/abbi.1996.0037. [DOI] [PubMed] [Google Scholar]
  • 79.Hentze M. W., Muckenthaler M. U., Andrews N. C. Cell. 2004;117:285–297. doi: 10.1016/S0092-8674(04)00343-5. [DOI] [PubMed] [Google Scholar]
  • 80.Meyron-Holtz E. G., Ghosh M. C., Rouault T. A. Science. 2004;306:2087–2090. doi: 10.1126/science.1103786. [DOI] [PubMed] [Google Scholar]
  • 81.Starzynski R. R., Lipinski P., Drapier J. C., Diet A., Smuda E., Bartlomiejczyk T., Gralak M. A., Kruszewski M. J. Biol. Chem. 2005;280:4207–4212. doi: 10.1074/jbc.M411055200. [DOI] [PubMed] [Google Scholar]
  • 82.Recalcati S., Alberghini A., Campanella A., Gianelli U., de Camilli E., Conte D., Cairo G. Haematologica. 2006;91:303–310. [PubMed] [Google Scholar]
  • 83.Corna G., Galy B., Hentze M. W., Cairo G. J. Mol. Med. 2006;84:551–560. doi: 10.1007/s00109-006-0068-y. [DOI] [PubMed] [Google Scholar]
  • 84.Cooperman S. S., Meyron-Holtz E. G., Olivierre-Wilson H., Ghosh M. C., McConnell J. P., Rouault T. A. Blood. 2005;106:1084–1091. doi: 10.1182/blood-2004-12-4703. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 85.Thomson A. M., Rogers J. T., Leedman P. J. J. Biol. Chem. 2000;275:31609–31615. doi: 10.1074/jbc.M002354200. [DOI] [PubMed] [Google Scholar]
  • 86.Fillebeen C., Caltagirone A., Martelli A., Moulis J. M., Pantopoulos K. Biochem. J. 2005;388:143–150. doi: 10.1042/BJ20041623. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 87.Fillebeen C., Chahine D., Caltagirone A., Segal P., Pantopoulos K. Mol. Cell Biol. 2003;23:6973–6981. doi: 10.1128/MCB.23.19.6973-6981.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 88.Schalinske K. L., Eisenstein R. S. J. Biol. Chem. 1996;271:7168–7176. doi: 10.1074/jbc.271.12.7168. [DOI] [PubMed] [Google Scholar]
  • 89.Irace C., Scorziello A., Maffettone C., Pignataro G., Matrone C., Adornetto A., Santamaria R., Annunziato L., Colonna A. J. Neurochem. 2005;95:1321–1331. doi: 10.1111/j.1471-4159.2005.03449.x. [DOI] [PubMed] [Google Scholar]
  • 90.Sureda A., Hebling U., Pons A., Mueller S. Free Radic. Res. 2005;39:817–824. doi: 10.1080/10715760500164045. [DOI] [PubMed] [Google Scholar]
  • 91.Mueller S. Biofactors. 2005;24:171–181. doi: 10.1002/biof.5520240121. [DOI] [PubMed] [Google Scholar]
  • 92.Oliveira L., Bouton C., Drapier J. C. J. Biol. Chem. 1999;274:516–521. doi: 10.1074/jbc.274.1.516. [DOI] [PubMed] [Google Scholar]
  • 93.Phillips J. D., Kinikini D. V., Yu Y., Guo B., Leibold E. A. Blood. 1996;87:2983–2992. [PubMed] [Google Scholar]
  • 94.Kim S., Wing S. S., Ponka P. Mol. Cell Biol. 2004;24:330–337. doi: 10.1128/MCB.24.1.330-337.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 95.Nanami M., Ookawara T., Otaki Y., Ito K., Moriguchi R., Miyagawa K., Hasuike Y., Izumi M., Eguchi H., Suzuki K., Nakanishi T. Arterioscler. Thromb. Vasc. Biol. 2005;25:2495–2501. doi: 10.1161/01.ATV.0000190610.63878.20. [DOI] [PubMed] [Google Scholar]
  • 96.Lipinski P., Starzynski R. R., Drapier J. C., Bouton C., Bartlomiejczyk T., Sochanowicz B., Smuda E., Gajkowska A., Kruszewski M. Biochem. Biophys. Res. Commun. 2005;327:349–355. doi: 10.1016/j.bbrc.2004.12.012. [DOI] [PubMed] [Google Scholar]
  • 97.Kwik-Uribe C., Smith D. R. J. Neurosci. Res. 2006;83:1601–1610. doi: 10.1002/jnr.20836. [DOI] [PubMed] [Google Scholar]
  • 98.Festa M., Colonna A., Pietropaolo C., Ruffo A. Biochem. J. 2000;348:315–320. doi: 10.1042/0264-6021:3480315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 99.Santamaria R., Irace C., Festa M., Maffettone C., Colonna A. Biochim. Biophys. Acta. 2004;1691:151–159. doi: 10.1016/j.bbamcr.2004.01.004. [DOI] [PubMed] [Google Scholar]
  • 100.Ishikawa H., Kato M., Hori H., Ishimori K., Kirisako T., Tokunaga F., Iwai K. Mol. Cell. 2005;19:171–181. doi: 10.1016/j.molcel.2005.05.027. [DOI] [PubMed] [Google Scholar]
  • 101.Liew Y. F., Shaw N. S. J. J. Nutr. 2005;135:2151–2158. doi: 10.1093/jn/135.9.2151. [DOI] [PubMed] [Google Scholar]
  • 102.Seznec H., Simon D., Bouton C., Reutenauer L., Hertzog A., Golik P., Procaccio V., Patel M., Drapier J. C., Koenig M., Puccio H. Hum. Mol. Genet. 2005;14:463–474. doi: 10.1093/hmg/ddi042. [DOI] [PubMed] [Google Scholar]
  • 103.O’Neill H. A., Gakh O., Park S., Cui J., Mooney S. M., Sampson M., Ferreira G. C., Isaya G. Biochemistry. 2005;44:537–545. doi: 10.1021/bi048459j. [DOI] [PubMed] [Google Scholar]
  • 104.Stehling O., Elsasser H. P., Bruckel B., Muhlenhoff U., Lill R. Hum. Mol. Genet. 2004;13:3007–3015. doi: 10.1093/hmg/ddh324. [DOI] [PubMed] [Google Scholar]
  • 105.Nie G., Sheftel A. D., Kim S. F., Ponka P. Blood. 2005;105:2161–2167. doi: 10.1182/blood-2004-07-2722. [DOI] [PubMed] [Google Scholar]
  • 106.Freminet A. Comp. Biochem. Physiol. 1981;70:427–430. [Google Scholar]
  • 107.Medvedeva L. V., Popova T. N., Artyukhov V. G., Matasova L. V. Izv. RAN. Ser. Biol. 2002;5:538–543. [PubMed] [Google Scholar]
  • 108.Medvedeva L. V., Popova T. N., Artyukhov V. G., Matasova L. V., Akatova R. V. Byul. Eksp. Biol. Med. 2002;34:151–156. doi: 10.1023/a:1021171811902. [DOI] [PubMed] [Google Scholar]
  • 109.Hinerfeld D., Traini M. D., Weinberger R. P., Cochran B., Doctrow S. R., Harry J., Melov S. J. Neurochem. 2004;88:657–667. doi: 10.1046/j.1471-4159.2003.02195.x. [DOI] [PubMed] [Google Scholar]
  • 110.Salvatore M. F., Fisher B., Surgener S. P., Gerhardt G. A., Rouault T. Mol. Brain Res. 2005;139:341–347. doi: 10.1016/j.molbrainres.2005.06.002. [DOI] [PubMed] [Google Scholar]
  • 111.Kil I. S., Park J. W. J. Biol. Chem. 2005;280:10846–10854. doi: 10.1074/jbc.M411306200. [DOI] [PubMed] [Google Scholar]
  • 112.Kalivendi S. V., Cunningham S., Kotamraju S., Joseph J., Hillard C. J., Kalyanaraman B. J. Biol. Chem. 2004;279:15240–15247. doi: 10.1074/jbc.M312497200. [DOI] [PubMed] [Google Scholar]
  • 113.Shang T., Kotamraju S., Kalivendi S. V., Hillard C. J., Kalyanaraman B. J. Biol. Chem. 2004;279:19099–19112. doi: 10.1074/jbc.M400101200. [DOI] [PubMed] [Google Scholar]
  • 114.Patel M. Free Radic. Biol. Med. 2004;37:1951–1962. doi: 10.1016/j.freeradbiomed.2004.08.021. [DOI] [PubMed] [Google Scholar]
  • 115.Lobmayr L., Brooks D. G., Wilson R. B. Gene. 2005;354:157–161. doi: 10.1016/j.gene.2005.04.040. [DOI] [PubMed] [Google Scholar]
  • 116.Roy A., Solodovnikova N., Nicholson T., Antholine W., Walden W. E. EMBO J. 2003;22:4826–4835. doi: 10.1093/emboj/cdg455. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 117.Fernaeus S., Halldin J., Bedecs K., Land T. Mol. Brain Res. 2005;133:266–273. doi: 10.1016/j.molbrainres.2004.10.018. [DOI] [PubMed] [Google Scholar]

Articles from Biochemistry. Biokhimiia are provided here courtesy of Nature Publishing Group

RESOURCES