Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2014 Mar 17;12(2):73–79. doi: 10.1007/s10156-005-0426-7

Inactivation of influenza A virus by gentian violet (GV) and GV-dyed cotton cloth, and bactericidal activities of these agents

Ariaki Nagayama 1,*
PMCID: PMC7087860  PMID: 16648946

Abstract

Recently we have heard warnings of an outbreak of a highly pathogenic avian influenza virus (H5N1). Although, to prevent such infections we must prepare anti-viral drugs and type-specific vaccines against influenza, we need various simple and effective protection methods, such as the use of face masks for public health. Also, in any consideration of bacterial infections, methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococci (VRE), and multidrug-resistant Pseudomonas aeruginosa (MDRP) also pose serious concerns which must be addressed. I examined the antiviral activity of gentian violet (GV) and GV-dyed cloth against the influenza A (H1N1) virus. Time-kill studies were carried out, and the virus titer was determined based on the 50% tissue culture infective dose (TCID50). The minimum inhibitory concentrations (MICs) of GV against bacteria were also determined, and the killing activities of the GV-dyed cloth were judged from viable cell counts. GV immediately killed the influenza A virus and this was confirmed by electron microscopy. Moreover, cloth dyed with a combination of GV and copper showed not only excellent antiviral activity but also prominent bactericidal activities.

Key words: Influenza virus, MRSA, VRE, MDRP, Gentian violet

References

  • 1.Aldhous P. Vietnam's war on flu. Nature. 2005;433:102–104. doi: 10.1038/433102a. 10.1038/433102a. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Ungchusak K., Auewarakul P., Dowell SF, Kitphati R., Auwanit W., Puthavathana P., et al. Probable person-to-person transmission of avian influenza A (H5N1) N Engl J Med. 2005;352:333–340. doi: 10.1056/NEJMoa044021. 10.1056/NEJMoa044021. [DOI] [PubMed] [Google Scholar]
  • 3.Stöhr K. Avian influenza and pandemic – research needs and opportunities. N Engl J Med. 2005;352:405–407. doi: 10.1056/NEJMe048344. 10.1056/NEJMe048344. [DOI] [PubMed] [Google Scholar]
  • 4.Hien T.T., Jong M., Farrar J. Avian influenza – challenge to global health care structure. N Engl J Med. 2004;351:2363–2365. doi: 10.1056/NEJMp048267. 10.1056/NEJMp048267. [DOI] [PubMed] [Google Scholar]
  • 5.The World Health Organization Global Influenza Program Surveillance Network Evolution of H5N1 Avian influnza viruses in Asia. Emerg Infect Dis. 2005;11:1515–1521. doi: 10.3201/eid1110.050644. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Chen H., Deng G., Li Z., Tian G., Li Y., Jiao P., et al. The evolution of H5N1 influenza viruses in ducks in southern China. Proc Natl Acad Sci USA. 2004;101:10452–10457. doi: 10.1073/pnas.0403212101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Kuiken T., Rimmelzwaan G., van Riel D., Van Amerongen G., Baars M., Fouchier R., et al. Avian H5N1 influenza in cats. Science. 2004;306:241. doi: 10.1126/science.1102287. 10.1126/science.1102287. [DOI] [PubMed] [Google Scholar]
  • 8.Kazakova S.V., Hageman J.C., Matava M., Srinivasan A., Phelan L., Garfinkel B., et al. A clone of methicillin-resistant Staphylococcus aureus among professional football players. N Engl J Med. 2005;352:468–475. doi: 10.1056/NEJMoa042859. 10.1056/NEJMoa042859. [DOI] [PubMed] [Google Scholar]
  • 9.Chambers H.F. Community-associated MRSA – resistance and virulence converge. N Engl J Med. 2005;352:1485–1487. doi: 10.1056/NEJMe058023. 10.1056/NEJMe058023. [DOI] [PubMed] [Google Scholar]
  • 10.Fridkin S.K., Hageman J.C., Morrison M., Sanza L.T., Como-Sabetti K., Jernigan J.A., et al. Methicillin-resistant Staphylococcus aureus disease in three communities. N Engl J Med. 2005;352:1436–1444. doi: 10.1056/NEJMoa043252. 10.1056/NEJMoa043252. [DOI] [PubMed] [Google Scholar]
  • 11.Reed L.J., Muench H. A simple method of estimating 50% endpoints. Am J Hyg. 1938;27:493–497. [Google Scholar]
  • 12.Laver W.G. In: Fundamental techniques in virology. Habel K., Salzman N.P., editors. Academic; New York: 1969. Purification of influenza virus; pp. 82–86. [Google Scholar]
  • 13.Docampo R., Moreno S.N.J. The metabolism and mode of action of gentian violet. Drug Metab Rev. 1990;22:161–178. doi: 10.3109/03602539009041083. [DOI] [PubMed] [Google Scholar]
  • 14.Gawande A. Notes of a surgeon: on washing hands. N Engl J Med. 2004;350:1283–1286. doi: 10.1056/NEJMp048025. 10.1056/NEJMp048025. [DOI] [PubMed] [Google Scholar]
  • 15.Hollenbuck J.E. An avian connection as a catalyst to the 1918–1919 influenza pandemic. Int J Med Sci. 2005;2:87–90. doi: 10.7150/ijms.2.87. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Chen H., Smith G.J.D., Zhang S.Y., Qin K., Wang J., Li K.S., et al. H5N1 virus outbreak in migratory waterfowl. Nature. 2005;436:191–192. doi: 10.1038/nature03974. 10.1038/nature03974. [DOI] [PubMed] [Google Scholar]
  • 17.Liu J., Xiao H., Lei F., Qin K., Zhang X., Zhang X., et al. Highly pathogenic H5N1 influenza virus infection in migratory birds. Science. 2005;309:1206. doi: 10.1126/science.1115273. 10.1126/science.1115273. [DOI] [PubMed] [Google Scholar]
  • 18.Palese P. Influenza: old and new threats. Nature Med. 2004;10:S82–S87. doi: 10.1038/nm1141. 10.1038/nm1141. [DOI] [PubMed] [Google Scholar]
  • 19.Stöhr K., Esveld M. Enhanced: will vaccines be available for the next influenza pandemic? Science. 2004;306:2195–2196. doi: 10.1126/science.1108165. 10.1126/science.1108165. [DOI] [PubMed] [Google Scholar]
  • 20.Osterholm M.T. Preparing for the next pandemic. N Engl J Med. 2005;352:1839–1842. doi: 10.1056/NEJMp058068. 10.1056/NEJMp058068. [DOI] [PubMed] [Google Scholar]
  • 21.Check E. Is this our best shot? Nature. 2005;435:404–406. doi: 10.1038/435404a. 10.1038/435404a. [DOI] [PubMed] [Google Scholar]
  • 22.Abbott A. What's in the medicine cabinet? Nature. 2005;435:407–409. doi: 10.1038/435407a. 10.1038/435407a. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Kiso M., Mitamura K., Sakai-Tagawa Y., Shiraishi K., Kawakami C., Kimura K., et al. Resistant influenza A viruses in children treated with oseltamivir. A descriptive study. Lancet. 2004;364:759–765. doi: 10.1016/S0140-6736(04)16934-1. 10.1016/S0140-6736(04)16934-1. [DOI] [PubMed] [Google Scholar]
  • 24.Le Q.M., Kiso M., Someya K., Sakai Y.T., Nguyen T.H., Nguyan H.L. Isolation of drug-resistant H5N1 virus. Nature. 2005;437:1108. doi: 10.1038/4371108a. 10.1038/4371108a. [DOI] [PubMed] [Google Scholar]
  • 25.Seto W.H., Tsang D., Yung R.W.H., Ching T.Y., Ng T.K., Ho M., et al. Effectiveness of precautions against droplets and contact in prevention of nosocomial transmission of severe acute respiratory syndrome (SARS) Lancet. 2003;361:1519–1520. doi: 10.1016/S0140-6736(03)13168-6. 10.1016/S0140-6736(03)13168-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Kariwa H., Fujii N., Takeshima I. Inactivation of SARS coronavirus by means of povidone-iodine, physical conditions, and chemical reagents. Jpn J Vet Res. 2004;52:105–112. [PubMed] [Google Scholar]
  • 27.The Writing Committee of the World Health Organization (WHO) Consultation on Human Influenza A/H5 Avian influenza A (H5N1) infection in humans. N Engl J Med. 2005;353:1374–1385. doi: 10.1056/NEJMra052211. 10.1056/NEJMra052211. [DOI] [PubMed] [Google Scholar]
  • 28.Tumpey T.M., Basler D.F., Aguilar P.V., Zeng H., Solorzano A., Swayne D.E. Characterization of the reconstructed 1918 Spanish influenza pandemic virus. Science. 2005;310:77–80. doi: 10.1126/science.1119392. 10.1126/science.1119392. [DOI] [PubMed] [Google Scholar]
  • 29.Taubenberger J.K., Reid A.H., Lourens R.M., Wang R., Jin G., Fanning T.G. Characterization of the 1918 influenza virus polymerase genes. Nature. 2005;437:889–893. doi: 10.1038/nature04230. 10.1038/nature04230. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Infection and Chemotherapy are provided here courtesy of Elsevier

RESOURCES