Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 2011 Aug 28;49(10):2345. doi: 10.1007/s10910-011-9890-8

Graphical and numerical representations of DNA sequences: statistical aspects of similarity

Dorota Bielińska-Wąż 1,
PMCID: PMC7087963  PMID: 32214591

Abstract

New approaches aiming at a detailed similarity/dissimilarity analysis of DNA sequences are formulated. Several corrections that enrich the information which may be derived from the alignment methods are proposed. The corrections take into account the distributions along the sequences of the aligned bases (neglected in the standard alignment methods). As a consequence, different aspects of similarity, as for example asymmetry of the gene structure, may be studied either using new similarity measures associated with four-component spectral representation of the DNA sequences or using alignment methods with corrections introduced in this paper. The corrections to the alignment methods and the statistical distribution moment-based descriptors derived from the four-component spectral representation of the DNA sequences are applied to similarity/dissimilarity studies of β-globin gene across species. The studies are supplemented by detailed similarity studies for histones H1 and H4 coding sequences. The data are described according to the latest version of the EMBL database. The work is supplemented by a concise review of the state-of-art graphical representations of DNA sequences.

Keywords: Graphical representations of DNA sequences, Descriptors, Similarity/dissimilarity analysis of DNA sequences

Open Access

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

References

  • 1.Fuchs R. Bioinformatics. 2002;18:505. doi: 10.1093/bioinformatics/18.4.505. [DOI] [PubMed] [Google Scholar]
  • 2.Herzel H., Ebeling W., Schmidt A.O. Phys. Rev. E. 1994;50:5061. doi: 10.1103/PhysRevE.50.5061. [DOI] [PubMed] [Google Scholar]
  • 3.Mantegna R.N., Buldyrev S.V., Goldberger A.L., Havlin S., Peng C.-K., Simons M., Stanley H.E. Phys. Rev. E. 1995;52:2939. doi: 10.1103/PhysRevE.52.2939. [DOI] [PubMed] [Google Scholar]
  • 4.Li W. Comput. Chem. 1997;21:257. doi: 10.1016/S0097-8485(97)00022-3. [DOI] [PubMed] [Google Scholar]
  • 5.Berger J.A., Mitra S.K., Carli M., Neri A. J. Franklin Inst. 2004;341:37. doi: 10.1016/j.jfranklin.2003.12.002. [DOI] [Google Scholar]
  • 6.Voss R.F. Phys. Rev. Lett. 1992;68:3805. doi: 10.1103/PhysRevLett.68.3805. [DOI] [PubMed] [Google Scholar]
  • 7.Arneodo A., Bacry E., Graves P.V., Muzy J.F. Phys. Rev. Lett. 1995;74:3293. doi: 10.1103/PhysRevLett.74.3293. [DOI] [PubMed] [Google Scholar]
  • 8.Buldyrev S.V., Goldberger A.L., Havlin S., Mantegna R.N., Matsa M.E., Peng C.-K., Simons M., Stanley H.E. Phys. Rev. E. 1995;51:5084. doi: 10.1103/PhysRevE.51.5084. [DOI] [PubMed] [Google Scholar]
  • 9.Azbel M.Y. Phys. Rev. Lett. 1995;75:168. doi: 10.1103/PhysRevLett.75.168. [DOI] [PubMed] [Google Scholar]
  • 10.Peng C.-K., Buldyrev S.V., Goldberger A.L., Havlin S., Sciortino F., Simons M., Stanley H.E. Nature. 1992;356:168. doi: 10.1038/356168a0. [DOI] [PubMed] [Google Scholar]
  • 11.Silverman B.D., Linsker R. J. Theor. Biol. 1986;118:295. doi: 10.1016/S0022-5193(86)80060-1. [DOI] [PubMed] [Google Scholar]
  • 12.Audit B., Thermes C., Vaillant C., d’Aubenton-Carafa Y., Muzy J.F., Arneodo A. Phys. Rev. Lett. 2001;86:2471. doi: 10.1103/PhysRevLett.86.2471. [DOI] [PubMed] [Google Scholar]
  • 13.Afreixo V., Bastos C.A.C., Pinho A.J., Garcia S.P., Ferreira P.J.S.G. Bioinformatics. 2009;25:3064. doi: 10.1093/bioinformatics/btp546. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Chenna R., Sugawara H., Koike T., Lopez R., Gibson T.J., Higgins D.G., Thompson J.D. Nucleic Acids Res. 2003;31:3497. doi: 10.1093/nar/gkg500. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Altschul S.F., Gish W., Miller W., Myers E.W., Lipman D.J. J. Mol. Biol. 1990;215:403. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
  • 16.Needleman S.B., Wunsch C.D. J. Mol. Biol. 1970;48:443. doi: 10.1016/0022-2836(70)90057-4. [DOI] [PubMed] [Google Scholar]
  • 17.Notredame C., Higgins D.G., Heringa J. J. Mol. Biol. 2000;302:205. doi: 10.1006/jmbi.2000.4042. [DOI] [PubMed] [Google Scholar]
  • 18.Durbin R., Eddy S.R., Krogh A., Mitchison G. Biological Sequence Analysis. Cambridge: Cambridge University Press; 1998. [Google Scholar]
  • 19.Waterman M.S. Introduction to Computational Biology: Maps, Sequences, and Genomes: Interdisciplinary Statistics. Boca Raton, FL: Chapman and Hall/CRC; 1995. [Google Scholar]
  • 20.Vinga S., Almeida J. Bioinformatics. 2003;19:513. doi: 10.1093/bioinformatics/btg005. [DOI] [PubMed] [Google Scholar]
  • 21.Pham T.D., Zuegg J. Bioinformatics. 2004;20:3455. doi: 10.1093/bioinformatics/bth426. [DOI] [PubMed] [Google Scholar]
  • 22.Jaklič G., Pisanski T., Randić M. J. Comput. Biol. 2006;13:1558. doi: 10.1089/cmb.2006.13.1558. [DOI] [PubMed] [Google Scholar]
  • 23.Zhang B.-H., Wang H.-S., Xu L. Chemometr. Intell. Lab. Syst. 2007;87:194. doi: 10.1016/j.chemolab.2007.01.002. [DOI] [Google Scholar]
  • 24.Chen W., Liao B., Liu Y., Zhu W., Su Z. MATCH Commun. Math. Comput. Chem. 2008;60:291. [Google Scholar]
  • 25.Zhang Y. MATCH Commun. Math. Comput. Chem. 2008;60:313. [Google Scholar]
  • 26.Li C., Yu X., Helal N. Chem. Phys. Lett. 2008;459:172. doi: 10.1016/j.cplett.2008.05.039. [DOI] [Google Scholar]
  • 27.Li C., Wang J. J. Math. Chem. 2008;43:26. doi: 10.1007/s10910-006-9176-8. [DOI] [Google Scholar]
  • 28.Chen W., Zhang Y. MATCH Commun. Math. Comput. Chem. 2009;61:533. [Google Scholar]
  • 29.Chen W., Zhang Y. MATCH Commun. Math. Comput. Chem. 2009;61:781. [Google Scholar]
  • 30.Feng J., Hu Y., Wan P., Zhang A., Zhao W. J. Theor. Biol. 2010;266:703. doi: 10.1016/j.jtbi.2010.07.040. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31.Bai F., Zhang J., Zheng J. Appl. Math. Lett. 2011;24:232. doi: 10.1016/j.aml.2010.09.010. [DOI] [Google Scholar]
  • 32.Randić M., Balaban A.T. J. Chem. Inf. Comput. Sci. 2003;43:532. doi: 10.1021/ci020051a. [DOI] [PubMed] [Google Scholar]
  • 33.Chi R., Ding K. Chem. Phys. Lett. 2005;407:63. doi: 10.1016/j.cplett.2005.03.056. [DOI] [Google Scholar]
  • 34.Tang X.C., Zhou P.P., Qiu W.Y. Chinese Sci. Bull. 2010;55:701. doi: 10.1007/s11434-010-0045-2. [DOI] [Google Scholar]
  • 35.Liao B., Li R., Zhu W., Xiang X. J. Math. Chem. 2007;42:47. doi: 10.1007/s10910-006-9091-z. [DOI] [Google Scholar]
  • 36.Liao B., Wang T. J. Chem. Inf. Comput. Sci. 2004;44:1666. doi: 10.1021/ci034271f. [DOI] [PubMed] [Google Scholar]
  • 37.Hönl M., Ragan M.A. Syst. Biol. 2007;56:206. doi: 10.1080/10635150701294741. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38.Liao B., Tan M., Ding K. Chem. Phys. Lett. 2005;414:296. doi: 10.1016/j.cplett.2005.08.079. [DOI] [Google Scholar]
  • 39.Liao B. Chem. Phys. Lett. 2005;401:196. doi: 10.1016/j.cplett.2004.11.059. [DOI] [Google Scholar]
  • 40.Liao B., Shan X., Zhu W., Li R. Chem. Phys. Lett. 2006;422:282. doi: 10.1016/j.cplett.2006.02.081. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41.Liao B., Xiang X., Zhu W. J. Comput. Chem. 2006;27:1196. doi: 10.1002/jcc.20439. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42.Yau S.S., Wang J., Niknejad A., Lu C., Jin N., Ho Y. Nucleic Acid Res. 2003;31:3078. doi: 10.1093/nar/gkg432. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 43.Yu C., Liang Q., Yin C., He R.L., Yau S.-T. DNA Res. 2010;17:155. doi: 10.1093/dnares/dsq008. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 44.Wang W., Liao B., Wang T., Zhu W. Int. J. Quantum Chem. 2006;106:1998. doi: 10.1002/qua.21001. [DOI] [Google Scholar]
  • 45.Wang H., Zhang Y. Int. J. Quantum Chem. 2010;110:1964. [Google Scholar]
  • 46.Bai F., Zhu W., Wang T. Chem. Phys. Lett. 2005;408:258. doi: 10.1016/j.cplett.2005.04.052. [DOI] [Google Scholar]
  • 47.Randić M., Plavšić D. Chem. Phys. Lett. 2009;476:277. doi: 10.1016/j.cplett.2009.06.013. [DOI] [Google Scholar]
  • 48.Nandy A., Basak S.C., Gute B.D. J. Chem. Inf. Model. 2007;47:945. doi: 10.1021/ci600558w. [DOI] [PubMed] [Google Scholar]
  • 49.Ghosh A., Nandy A., Nandy P., Gute B.D., Basak S.C. J. Chem. Inf. Model. 2009;49:2627. doi: 10.1021/ci9001662. [DOI] [PubMed] [Google Scholar]
  • 50.Ghosh A., Nandy A., Nandy P. BMC Struct. Biol. 2010;10:22. doi: 10.1186/1472-6807-10-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 51.Randić M. Chem. Phys. Lett. 2007;440:291. doi: 10.1016/j.cplett.2007.04.037. [DOI] [Google Scholar]
  • 52.Li Y., Huang G., Liao B., Liu Z. MATCH Commun. Math. Comput. Chem. 2009;61:519. [Google Scholar]
  • 53.Yao Y.-H., Dai Q., Li L., Nan X.-Y., He P.-A., Zhang Y.-Z. J. Comput. Chem. 2010;31:1045. doi: 10.1002/jcc.21391. [DOI] [PubMed] [Google Scholar]
  • 54.He P.-A., Zhang Y.-P., Yao Y.-H, Tang Y.-F., Nan X.-Y. J. Comput. Chem. 2010;31:2136. doi: 10.1002/jcc.21501. [DOI] [PubMed] [Google Scholar]
  • 55.Bender A., Glen R.C. Org. Biomol. Chem. 2004;2:3204. doi: 10.1039/b409813g. [DOI] [PubMed] [Google Scholar]
  • 56.Bielińska-Wa̧ż D., Wa̧ż P., Basak S.C. Eur. Phys. J. B. 2006;50:333. doi: 10.1140/epjb/e2006-00124-y. [DOI] [Google Scholar]
  • 57.Carbó-Dorca R., Mezey P.G., editors. Advances in Molecular Similarity, vol. 2. Stamford: JAI Press; 1998. p. 297. [Google Scholar]
  • 58.Livingstone D.J., Clark T., Ford M.G., Hudson B.D., Whitley D.C. SAR QSAR Environ. Res. 2008;19:285. doi: 10.1080/10629360802085041. [DOI] [PubMed] [Google Scholar]
  • 59.Devillers J., Balaban A.T., editors. Topological Indices and Related Descriptors in QSAR and QSPR. The Netherlands: Gordon and Breach Science Publishers; 1999. p. 811. [Google Scholar]
  • 60.Basak S.C., Gute B.D., Mills D., Hawkins D.M. J. Mol. Struct. (Theochem) 2003;622:127. doi: 10.1016/S0166-1280(02)00624-3. [DOI] [Google Scholar]
  • 61.Basak S.C., Mills D. J. Math. Chem. 2011;49:185. doi: 10.1007/s10910-010-9734-y. [DOI] [Google Scholar]
  • 62.D. Bielińska-Wa̧ż, P. Wa̧ż, S.C. Basak, R. Natarajan, in Symmetry, Spectroscopy and SCHUR, ed. by R.C. King et al. (Nicolaus University Press, Toruń, 2006), pp. 27–32
  • 63.Bielińska-Wa̧ż D., Wa̧ż P., Basak S.C. J. Math. Chem. 2007;42:1003. doi: 10.1007/s10910-006-9155-0. [DOI] [Google Scholar]
  • 64.Aguero-Chapin G., González-Díaz H., Molina R., Varona-Santos J., Uriarte E., González-Díaz Y. FEBS Lett. 2006;580:723. doi: 10.1016/j.febslet.2005.12.072. [DOI] [PubMed] [Google Scholar]
  • 65.Bielińska-Wa̧ż D. J. Math. Chem. 2010;47:41. doi: 10.1007/s10910-009-9535-3. [DOI] [Google Scholar]
  • 66.Bhasi K., Zhang L., Brazeau D., Zhang A., Ramanathan M. Bioinformatics. 2006;22:1569. doi: 10.1093/bioinformatics/btl144. [DOI] [PubMed] [Google Scholar]
  • 67.Yin C., Yau S.-T. J. Theor. Biol. 2007;247:687. doi: 10.1016/j.jtbi.2007.03.038. [DOI] [PubMed] [Google Scholar]
  • 68.Clamp M., Fry B., Kamal M., Xie X., Cuff J., Lin M.F., Kellis M., Lindblad-Toh K., Lander E.S. PNAS. 2007;104:19428. doi: 10.1073/pnas.0709013104. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 69.Zhang C.T., Wang J. Nucleic Acids Res. 2000;28:2804. doi: 10.1093/nar/28.14.2804. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 70.Yu J.-F., Sun X. J. Comput. Chem. 2010;31:2126. doi: 10.1002/jcc.21500. [DOI] [PubMed] [Google Scholar]
  • 71.D. Bielińska-Wa̧ż, S. Subramaniam, A new view on similarity of DNA sequences (in preparation).
  • 72.Mon K.K., French J.B. Ann. Phys. NY. 1975;95:90. doi: 10.1016/0003-4916(75)90045-7. [DOI] [Google Scholar]
  • 73.Brody T.A., Flores J., French J.B., Mello P.A., Pandey A., Wong S.S.M. Rev. Mod. Phys. 1981;53:385. doi: 10.1103/RevModPhys.53.385. [DOI] [Google Scholar]
  • 74.J.B. French, V.K. Kota, Annual Review of Nuclear and Particle Science, ed. J.D. Jackson, H.E. Gove, R.F. Schwitters (Palo Alto, CA, 1982), p. 35
  • 75.Bethe H.A. Phys. Rev. 1936;50:332. doi: 10.1103/PhysRev.50.332. [DOI] [Google Scholar]
  • 76.Ratcliff K.F. Phys. Rev. C. 1971;3:117. doi: 10.1103/PhysRevC.3.117. [DOI] [Google Scholar]
  • 77.Bancewicz M., Diercksen G.H.F., Karwowski J. Phys. Rev. A. 1989;40:5507. doi: 10.1103/PhysRevA.40.5507. [DOI] [PubMed] [Google Scholar]
  • 78.Bielińska-Wa̧ż D., Flocke N., Karwowski J. Phys. Rev. B. 1999;59:2676. doi: 10.1103/PhysRevB.59.2676. [DOI] [Google Scholar]
  • 79.Kendall M.G. The Advanced Theory of Statistics, vol. 1. London: Charles Griffin; 1943. [Google Scholar]
  • 80.Ivanov V.S., Sovkov V.B. Opt. Spectrosc. 1993;74:30. [Google Scholar]
  • 81.Ivanov V.S., Sovkov V.B. Opt. Spectrosc. 1993;74:52. [Google Scholar]
  • 82.Bielińska-Wa̧ż D., Karwowski J. Phys. Rev. A. 1995;52:1067. doi: 10.1103/PhysRevA.52.1067. [DOI] [PubMed] [Google Scholar]
  • 83.Bielińska-Wa̧ż D., Karwowski J. J. Quant. Spec. Rad. Transf. 1998;59:39. doi: 10.1016/S0022-4073(97)00140-4. [DOI] [Google Scholar]
  • 84.Lax M. J. Chem. Phys. 1952;20:1752. doi: 10.1063/1.1700283. [DOI] [Google Scholar]
  • 85.Bauche-Arnoult C., Bauche J., Klapisch M. Phys. Rev. A. 1985;31:2248. doi: 10.1103/PhysRevA.31.2248. [DOI] [PubMed] [Google Scholar]
  • 86.D. Bielińska-Wa̧ ż, Symmetry and Structural Properties of Condensed Matter, ed. T. Lulek et al. (World Scientific, Singapore 1999), pp. 212–221.
  • 87.Hamori E. Nature. 1985;314:585. doi: 10.1038/314585a0. [DOI] [PubMed] [Google Scholar]
  • 88.Gates M.A. Nature. 1985;316:219. doi: 10.1038/316219a0. [DOI] [PubMed] [Google Scholar]
  • 89.Nandy A. Curr. Sci. 1994;66:309. [Google Scholar]
  • 90.Leong P.M., Morgenthaler S. Comput. Appl. Biosci. 1995;11:503. doi: 10.1093/bioinformatics/11.5.503. [DOI] [PubMed] [Google Scholar]
  • 91.Hamori E., Ruskin J. J. Biol. Chem. 1983;258:1318. [PubMed] [Google Scholar]
  • 92.Nandy A. Curr. Sci. 1994;66:821. [Google Scholar]
  • 93.Mizraji E., Ninio L. Biochemie. 1985;67:445. doi: 10.1016/S0300-9084(85)80262-5. [DOI] [PubMed] [Google Scholar]
  • 94.Lobry J.R. Biochemie. 1996;78:323. doi: 10.1016/0300-9084(96)84764-X. [DOI] [PubMed] [Google Scholar]
  • 95.Guo X., Randić M., Basak S.C. Chem. Phys. Lett. 2001;350:106. doi: 10.1016/S0009-2614(01)01246-5. [DOI] [Google Scholar]
  • 96.Liu Y., Guo X., Pan L., Wang S. J. Chem. Inf. Comput. Sci. 2002;42:529. doi: 10.1021/ci010017g. [DOI] [PubMed] [Google Scholar]
  • 97.Huang G., Liao B., Li Y., Liu Z. Chem. Phys. Lett. 2008;462:129. doi: 10.1016/j.cplett.2008.07.046. [DOI] [Google Scholar]
  • 98.Huang G., Liao B., Li Y., Yu Y. Biophys. Chem. 2009;143:55. doi: 10.1016/j.bpc.2009.03.013. [DOI] [PubMed] [Google Scholar]
  • 99.Li C., Wang J. Internet Electron. J. Mol. Des. 2003;1:000. [Google Scholar]
  • 100.Bielińska-Wa̧ż D., Clark T., Wa̧ż P., Nowak W., Nandy A. Chem. Phys. Lett. 2007;442:140. doi: 10.1016/j.cplett.2007.05.050. [DOI] [Google Scholar]
  • 101.Bielińska-Wa̧ż D., Nowak W., Wa̧ż P., Nandy A., Clark T. Chem. Phys. Lett. 2007;443:408. doi: 10.1016/j.cplett.2007.06.088. [DOI] [Google Scholar]
  • 102.Zhang Z.-J. Bioinformatics. 2009;25:1112. doi: 10.1093/bioinformatics/btp130. [DOI] [PubMed] [Google Scholar]
  • 103.Liu Z., Liao B., Zhu W., Huang G. Int. J. Quantum Chem. 2009;109:948. doi: 10.1002/qua.21919. [DOI] [Google Scholar]
  • 104.Liu Z., Liao B., Zhu W. MATCH Commun. Math. Comput. Chem. 2009;61:541. [Google Scholar]
  • 105.Randić M., Vračko M., Lerš N., Plavšić D. Chem. Phys. Lett. 2003;368:1. doi: 10.1016/S0009-2614(02)01784-0. [DOI] [Google Scholar]
  • 106.Randić M., Vračko M., Lerš N., Plavšić D. Chem. Phys. Lett. 2003;371:202. doi: 10.1016/S0009-2614(03)00244-6. [DOI] [Google Scholar]
  • 107.Scholes P.A. The Oxford Companion to Music, 10th ed. Oxford: Oxford University Press; 1986. [Google Scholar]
  • 108.Li C., Wang J. Comb. Chem. High Throughput Screen. 2003;6:795. doi: 10.2174/138620703771826900. [DOI] [PubMed] [Google Scholar]
  • 109.Song J., Tang H. J. Biochem. Biophys. Methods. 2005;63:228. doi: 10.1016/j.jbbm.2005.04.004. [DOI] [PubMed] [Google Scholar]
  • 110.Liao B., Wang T. J. Comput. Chem. 2004;25:1364. doi: 10.1002/jcc.20060. [DOI] [PubMed] [Google Scholar]
  • 111.Wang J., Zhang Y. Chem. Phys. Lett. 2006;423:50. doi: 10.1016/j.cplett.2006.03.030. [DOI] [Google Scholar]
  • 112.Yao Y., Wang T. Chem. Phys. Lett. 2004;398:318. doi: 10.1016/j.cplett.2004.09.087. [DOI] [Google Scholar]
  • 113.Randić M. Chem. Phys. Lett. 2008;456:84. doi: 10.1016/j.cplett.2008.03.011. [DOI] [Google Scholar]
  • 114.Jeffrey H.J. Nucleic Acids Res. 1990;18:2163. doi: 10.1093/nar/18.8.2163. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 115.Jeffrey H.J. Comput. Graphics. 1992;16:25. doi: 10.1016/0097-8493(92)90067-6. [DOI] [Google Scholar]
  • 116.Randić M., Vračko M., Zupan J., Novič M. Chem. Phys. Lett. 2003;373:558. doi: 10.1016/S0009-2614(03)00639-0. [DOI] [Google Scholar]
  • 117.Randić M. Chem. Phys. Lett. 2004;386:468. doi: 10.1016/j.cplett.2004.01.088. [DOI] [Google Scholar]
  • 118.Randić M., Lerš N., Plavšić D., Basak S.C., Balaban A.T. Chem. Phys. Lett. 2005;407:205. doi: 10.1016/j.cplett.2005.03.086. [DOI] [Google Scholar]
  • 119.Pesek I., Zerovnik J. MATCH Commun. Math. Comput. Chem. 2008;60:301. [Google Scholar]
  • 120.Randić M., Vračko M., Nandy A., Basak S.C. J. Chem. Inf. Comp. Sci. 2000;40:1235. doi: 10.1021/ci000034q. [DOI] [PubMed] [Google Scholar]
  • 121.Li C., Wang J. Comb. Chem. High Throughput Screen. 2004;7:23. doi: 10.2174/138620704772884797. [DOI] [PubMed] [Google Scholar]
  • 122.Yao Y., Nan X., Wang T. Chem. Phys. Lett. 2005;411:248. doi: 10.1016/j.cplett.2005.06.040. [DOI] [Google Scholar]
  • 123.Yuan C., Liao B., Wang T. Chem. Phys. Lett. 2003;379:412. doi: 10.1016/j.cplett.2003.07.023. [DOI] [Google Scholar]
  • 124.Liao B., Wang T. J. Mol. Struct. Theochem. 2004;681:209. doi: 10.1016/j.theochem.2004.05.020. [DOI] [Google Scholar]
  • 125.Liao B., Wang T. Chem. Phys. Lett. 2004;388:195. doi: 10.1016/j.cplett.2004.02.089. [DOI] [Google Scholar]
  • 126.Liao B., Zhang Y., Ding K., Wang T.J. Mol. Struct. 2005;717:199. [Google Scholar]
  • 127.Chen W., Liao B., Xiang X., Zhu W. MATCH Commun. Math. Comput. Chem. 2009;61:767. [Google Scholar]
  • 128.Cao Z., Li R., Chen W. Int. J. Quantum. Chem. 2010;110:975. [Google Scholar]
  • 129.Zhang C.-T., Zhang R., Ou H.-Y. Bioinformatics. 2003;19:593. doi: 10.1093/bioinformatics/btg041. [DOI] [PubMed] [Google Scholar]
  • 130.Cao Z., Liao B., Li R. Int. J. Quantum. Chem. 2008;108:1485. doi: 10.1002/qua.21698. [DOI] [Google Scholar]
  • 131.Qi Z.-H., Fan T.-R. Chem. Phys. Lett. 2007;442:434. doi: 10.1016/j.cplett.2007.06.029. [DOI] [Google Scholar]
  • 132.Qi X.-Q., Wen J., Qi Z.-H. J. Theor. Biol. 2007;249:681. doi: 10.1016/j.jtbi.2007.08.025. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 133.Yu J.-F., Wang J.-H., Sun X. MATCH Commun. Math. Comput. Chem. 2010;63:493. [Google Scholar]
  • 134.Yu J.-F., Sun X., Wang J.-H. J. Theor. Biol. 2009;261:459. doi: 10.1016/j.jtbi.2009.08.005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 135.A. Nandy, M. Harle, S.C. Basak, Arkivoc ix (2006) 211.
  • 136.Yuan C., Liu L., Wang T., Li C. J. Math. Chem. 2008;43:1177. doi: 10.1007/s10910-007-9267-1. [DOI] [Google Scholar]
  • 137.He P., Wang J. Internet Electron. J. Mol. Des. 2002;1:668. [Google Scholar]
  • 138.Liao B., Tan M., Ding K. Chem. Phys. Lett. 2005;414:296. doi: 10.1016/j.cplett.2005.08.079. [DOI] [Google Scholar]
  • 139.Gates M.A. J. Theor. Biol. 1986;119:319. doi: 10.1016/S0022-5193(86)80144-8. [DOI] [PubMed] [Google Scholar]
  • 140.Raychaudhury C., Nandy A. J. Chem. Inf. Comput. Sci. 1999;39:243. doi: 10.1021/ci980077v. [DOI] [PubMed] [Google Scholar]
  • 141.Guo X., Nandy A. Chem. Phys. Lett. 2003;369:361. doi: 10.1016/S0009-2614(02)02029-8. [DOI] [Google Scholar]
  • 142.D. Bielińska-Wa̧ż, P. Wa̧ż, W. Nowak, A. Nandy, S.C. Basak, American Institute of Physics (AIP) Conference Proceedings 963 (New York 2007), pp. 28–30.
  • 143.Bielińska-Wa̧ż D., Nowak W., Pepłowski Ł., Wa̧ż P., Basak S.C., Natarajan R. J. Math. Chem. 2008;43:1560. doi: 10.1007/s10910-007-9284-0. [DOI] [Google Scholar]
  • 144.Bielińska-Wa̧ż D., Wa̧ż P. J. Math. Chem. 2008;43:1287. doi: 10.1007/s10910-007-9241-y. [DOI] [Google Scholar]
  • 145.Guo Y., Wang T. J. Mol. Struct. Theochem. 2008;853:62. doi: 10.1016/j.theochem.2007.12.003. [DOI] [Google Scholar]
  • 146.Bielińska-Wa̧ż D., Wa̧ż P., Clark T. Chem. Phys. Lett. 2007;445:68. doi: 10.1016/j.cplett.2007.07.044. [DOI] [Google Scholar]
  • 147.Bielińska-Wa̧ż D., Subramaniam S. J. Theor. Biol. 2010;266:667. doi: 10.1016/j.jtbi.2010.07.038. [DOI] [PubMed] [Google Scholar]
  • 148.Larkin M.A., Blackshields G., Brown N.P., Chenna R., McGettigan P.A., McWilliam H., Valentin F., Wallace I.M., Wilm A., Lopez R., Thompson J.D., Gibson T.J., Higgins D.G. Bioinformatics. 2007;23:2947. doi: 10.1093/bioinformatics/btm404. [DOI] [PubMed] [Google Scholar]
  • 149.He P., Wang J. J. Chem. Inf. Comput. Sci. 2002;42:1080. doi: 10.1021/ci010131z. [DOI] [PubMed] [Google Scholar]
  • 150.Randić M., Vračko M.J. J. Chem. Inf. Comput. Sci. 2000;40:599. doi: 10.1021/ci9901082. [DOI] [PubMed] [Google Scholar]
  • 151.Randić M., Guo X., Basak S.C. J. Chem. Inf. Comput. Sci. 2001;41:619. doi: 10.1021/ci000120q. [DOI] [PubMed] [Google Scholar]
  • 152.Liu Y.-z., Wang T.-m. Chem. Phys. Lett. 2006;417:173. doi: 10.1016/j.cplett.2005.10.007. [DOI] [Google Scholar]

Articles from Journal of Mathematical Chemistry are provided here courtesy of Nature Publishing Group

RESOURCES