Summary.
Starting from a collection of 1386 druggable compounds obtained from the 3D pharmacophore search, we performed a similarity search to narrow down the scope of docking studies. The template molecule is KZ7088 (Chou et al., 2003, Biochem Biophys Res Commun 308: 148–151). The MDL MACCS keys were used to fingerprint the molecules. The Tanimoto coefficient is taken as the metric to compare fingerprints. If the similarity threshold was 0.8, a set of 50 unique hits and 103 conformers were retrieved as a result of similarity search. The AutoDock 3.011 was used to carry out molecular docking of 50 ligands to their macromolecular protein receptors. Three compounds, i.e., C28H34O4N7Cl, C21H36O5N6, and C21H36O5N6, were found that may be promising candidates for further investigation. The main feature shared by these three potential inhibitors as well as the information of the involved side chains of SARS Cov Mpro may provide useful insights for the development of potent inhibitors against SARS enzyme.
Keywords: Keywords: SARS CoV Mpro – KZ7088 – Molecular docking – Similarity search – Inhibitor design
References
- Anand K, Ziebuhr J, Wadhwani P, Mesters JR, Hilgenfeld R. Coronavirus main proteinase (3CLpro) structure: basis for design of anti-SARS drugs. Science. 2003;300:1763–1767. doi: 10.1126/science.1085658. [DOI] [PubMed] [Google Scholar]
- Anfinsen CG. Principles that govern folding of protein chains. Science. 1973;181:223–230. doi: 10.1126/science.181.4096.223. [DOI] [PubMed] [Google Scholar]
- Brown RD, Martin YC. Use of structure-activity data to compare structure-based clustering. Methods and descriptors for use in compound selection. J Chem Inf Comput Sci. 1996;36:572–584. doi: 10.1021/ci9501047. [DOI] [Google Scholar]
- Chen L-L, Ou H-Y, Zhang R, Zhang C-T. ZCURVE_CoV: a new system to recognize protein coding genes in coronavirus genomes, and its applications in analyzing SARS-CoV genomes. Biochem Biophys Res Commun. 2003;307:382–388. doi: 10.1016/S0006-291X(03)01192-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chou KC. Studies on the enzyme kinetics of the cavity-active site. Acta Biochimica Biophys Sin. 1975;7:95–103. [Google Scholar]
- Chou KC. The kinetics of the combination reaction between enzyme and substrate. Sci Sin. 1976;19:505–528. [PubMed] [Google Scholar]
- Chou KC. Energy-optimized structure of antifreeze protein and its binding mechanism. J Mol Biol. 1992;223:509–517. doi: 10.1016/0022-2836(92)90666-8. [DOI] [PubMed] [Google Scholar]
- Chou KC. Review: structural bioinformatics and its impact to biomedical science. Curr Med Chem. 2004;11:2105–2134. doi: 10.2174/0929867043364667. [DOI] [PubMed] [Google Scholar]
- Chou KC, Carlacci L. Simulated annealing approach to the study of protein structures. Protein Eng. 1991;4:661–667. doi: 10.1093/protein/4.6.661. [DOI] [PubMed] [Google Scholar]
- Chou KC, Jiang SP. Studies on the rate of diffusion-controlled reactions of enzymes. Sci Sin. 1974;17:664–680. [PubMed] [Google Scholar]
- Chou KC, Pottle M, Nemethy G, Ueda Y, Scheraga HA. Structure of beta-sheets: origin of the right-handed twist and of the increased stability of antiparallel over parallel sheets. J Mol Biol. 1982;162:89–112. doi: 10.1016/0022-2836(82)90163-2. [DOI] [PubMed] [Google Scholar]
- Chou KC, Scheraga HA. Origin of the right-handed twist of beta-sheets of poly-L-valine chains. Proc Natl Acad Sci USA. 1982;79:7047–7051. doi: 10.1073/pnas.79.22.7047. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chou KC, Wei DQ, Zhong WZ. Binding mechanism of coronavirus main proteinase with ligands and its implication to drug design against SARS. Biochem Biophys Res Commun. 2003;308:148–151. doi: 10.1016/S0006-291X(03)01342-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chou KC, Zhou GP. Role of the protein outside active site on the diffusion-controlled reaction of enzyme. J Am Chem Soc. 1982;104:1409–1413. doi: 10.1021/ja00369a043. [DOI] [Google Scholar]
- Drosten C, Gunther S, Preiser W, van der Werf S, Brodt HR, Becker S, Rabenau H, Panning M, Kolesnikova L, Fouchier RA. Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N Engl J Med. 2003;348:1967–1976. doi: 10.1056/NEJMoa030747. [DOI] [PubMed] [Google Scholar]
- Du Q, Wang S, Wei DQ, Sirois S, Chou KC. Molecular modelling and chemical modification for finding peptide inhibitor against SARS CoV Mpro. Anal Biochem. 2005a;337:262–270. doi: 10.1016/j.ab.2004.10.003. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Du QS, Wang SQ, Jiang ZQ, Gao WN, Li YD, Wei DQ, Chou KC. Application of bioinformatics in search for cleavable peptides of SARS-CoV Mpro and chemical modification of octapeptides. Med Chem. 2005b;1:209–213. doi: 10.2174/1573406053765468. [DOI] [PubMed] [Google Scholar]
- Gao F, Ou H-Y, Chen L-L, Zheng W-X, Zhang C-T. Prediction for proteinase cleavage sitess in polyproteins of coronaviruses and its applications in analyzing SARS-CoV genomes. FEBS Lett. 2003;553:451–456. doi: 10.1016/S0014-5793(03)01091-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ksiazek TG, Erdman D, Goldsmith CS, Zaki SR, Peret T, Emery S, Tong S, Urbani C, Comer JA, Lim W. A novel coronavirus associated with severe acute respiratory syndrome. N Engl J Med. 2003;348:1953–1966. doi: 10.1056/NEJMoa030781. [DOI] [PubMed] [Google Scholar]
- Miura HS, Nakagaki K, Taguchi F. N-terminal domain of the murine coronavirus receptor CEACAM1 is responsible for fusogenic activation and conformational changes of the spike protein. J Virol. 2004;78:216–223. doi: 10.1128/JVI.78.1.216-223.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK, Olson AJ. Automated docking using a Lamarckian genetic algorithm and empirical binding free energy function. J Comput Chem. 1988;19:1639–1662. doi: 10.1002/(SICI)1096-987X(19981115)19:14<1639::AID-JCC10>3.0.CO;2-B. [DOI] [Google Scholar]
- Rayer M. Geometric problems and algorithms in computer-aided molecular design. In: Thomas L, editor. Bioinformatics from genomes to drugs. Weinheim: Wiley-VCH; 2002. pp. 318–319. [Google Scholar]
- Sheridan RP, Miller MD, Underwood DJ, Kearsley SK. Chemical similarity using geometric atom pair descriptors. J Chem Info Comput Sci. 1996;36:128–136. doi: 10.1021/ci950275b. [DOI] [Google Scholar]
- Shortridge KF. Severe acute respiratory syndrome and influenza: virus incursions from southern China. Am J Respir Crit Care Med. 2003;168:1416–1420. doi: 10.1164/rccm.2310005. [DOI] [PubMed] [Google Scholar]
- Sirois S, Wei DQ, Du Q, Chou KC. Virtual screening for SARS-CoV protease based on KZ7088 pharmacophore points. J Chem Inf Comput Sci. 2004;44:1111–1122. doi: 10.1021/ci034270n. [DOI] [PubMed] [Google Scholar]
- Sirois S, Hatzakis GE, Wei DQ, Du Q, Chou KC. Assessment of chemical libraries for their druggability. Comput Biol Chem. 2005;29:55–67. doi: 10.1016/j.compbiolchem.2004.11.003. [DOI] [PubMed] [Google Scholar]
- Tanford C. Contribution of hydrophobic interactions to the stability of the globular conformation of proteins. J Am Chem Soc. 1962;84:4240–4274. doi: 10.1021/ja00881a009. [DOI] [Google Scholar]
- Vaidyanathan J, Vaidyanathan TK, Yadav P. Collagen-ligand interaction in dentinal adhesion: computer visualization and analysis. Linaras Biomat. 2001;22:2911–2920. doi: 10.1016/S0142-9612(01)00038-2. [DOI] [PubMed] [Google Scholar]
- Xiong B, Gui CS, Xu XY, Luo C, Chen J, Luo HB, Chen LL, Li GW, Sun T, Yu CY, Yue LD, Duan WH, Shen JK, Qin L, Shi TL, Li YX, Chen KX, Luo XM, Shen X, Shen JH, Jiang HL. Acta Pharmacol Sin. 2003;24:497. [PubMed] [Google Scholar]
- Yang H, Yang M, Ding Y, Liu Y, Lou Z, Zhou Z, Sun L, Mo L, Ye S, Pang H, Gao GF, Anand K, Bartlam M, Hilgenfeld R, Rao Z. The crystal structures of severe acute respiratory syndrome virus main protease and its complex with an inhibitor. Proc Natl Acad Sci USA. 2003;100:13190–13195. doi: 10.1073/pnas.1835675100. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhou GQ, Zhong WZ. Diffusion-controlled reactions of enzymes. A comparison between Chou’s model and Alberty-Hammes-Eigen’s model. Eur J Biochem. 1982;128:383–387. doi: 10.1111/j.1432-1033.1982.tb06976.x. [DOI] [PubMed] [Google Scholar]
- Zhou ZP, Li TT, Chou KC. The flexibility during the juxtaposition of reacting groups and the upper limits of enzyme reactions. Biophys Chem. 1982;14:277–281. doi: 10.1016/0301-4622(81)85028-4. [DOI] [PubMed] [Google Scholar]