Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 2000 Dec;20(6):483–500. doi: 10.1023/A:1010454803579

Common Properties of Fusion Peptides from Diverse Systems

Isabelle Martin 1, Jean-Marie Ruysschaert 2
PMCID: PMC7087982  PMID: 11426690

Abstract

Although membrane fusion occurs ubiquitously and continuously in alleukaroytic cells, little is known about the mechanism that governs lipidbilayer fusion associated with any intracellular fusion reactions. Recentstudies of the fusion of enveloped viruses with host cell membranes havehelped to define the fusion process. The identification and characterizationof key proteins involved in fusion reactions have mainly driven recent advancesin our understanding of membrane fusion. The most important denominator amongthe fusion proteins is the fusion peptide. In this review, work done in thelast few years on the molecular mechanism of viral membrane fusion will behighlighted, focusing in particular on the role of the fusion peptide and themodification of the lipid bilayer structure. Much of what is known regardingthe molecular mechanism of viral membrane fusion has been gained using liposomesas model systems in which the molecular components of the membrane and the environmentare strictly controlled. Many amphilphilic peptides have a high affinity forlipid bilayers, but only a few sequences are able to induce membrane fusion. Thepresence of α-helical structure in at least part of the fusion peptideis strongly correlated with activity whereas, β-structure tends to beless prevalent, associated with non-native experimental conditions, and morerelated to vesicle aggregation than fusion. The specific angle of insertionof the peptides into the membrane plane is also found to be an importantcharacteristic for the fusion process. A shallow penetration, extending onlyto the central aliphatic core region, is likely responsible for the destabilization ofthe lipids required for coalescence of the apposing membranes and fusion.

Keywords: fusion peptide, model membrane, fusogenic activity, secondary structure, orientation

REFERENCES

  1. Almedia E. A. C. Mouse egg integrin alpha-6-beta-1 functions as a sperm receptor. Cell. 1995;81:1095–1104. doi: 10.1016/s0092-8674(05)80014-5. [DOI] [PubMed] [Google Scholar]
  2. Almers W., Tse F. W. Transmitter release from synapses: Does a preassembled fusion pore initiate exocytosis. Neuron. 1990;4:813–818. doi: 10.1016/0896-6273(90)90134-2. [DOI] [PubMed] [Google Scholar]
  3. Bailey A. L., Monck M. A., Cullis P. R. pH-Induced destabilization of lipid bilayers by a lipopeptide derived from Influenza hemagglutinin. Biochim. Biophys. Acta. 1997;1324:232–244. doi: 10.1016/s0005-2736(96)00228-3. [DOI] [PubMed] [Google Scholar]
  4. Baker K. A., Dutch R. E., Lamb R. A., Jardetzky T. S. Structural basis for paramyxovirusmediated membrane fusion. Molecular Cell. 1999;3:309–319. doi: 10.1016/s1097-2765(00)80458-x. [DOI] [PubMed] [Google Scholar]
  5. Bentz J., Ellens H., Alford D. An architecture for the fusion site of Influenza hemagglutinin. FEBS Lett. 1990;276:1–5. doi: 10.1016/0014-5793(90)80492-2. [DOI] [PubMed] [Google Scholar]
  6. Bentz J. Membrane-fusion mediated by coiled coils: A hypothesis. Biophys J. 2000;78:886–900. doi: 10.1016/S0006-3495(00)76646-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bentz J. Minimal aggregate size and minimal fusion unit for the first fusion pore of influenza hemagglutinin-mediated membrane fusion. Biophys. J. 2000;78:227–245. doi: 10.1016/S0006-3495(00)76587-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Bentz J., Ellens H., Alford D. Architecture of the Influenza hemagglutinin membrane fusion site. In: Bentz J., editor. Viral Fusion Mechanisms. Boca Raton, Ann Arbor, London and Tokyo: CRC Press; 1993. pp. 163–199. [Google Scholar]
  9. Berger E. A., Murphy P. M., Farber J. M. Chemokine receptors as HIV-1 coreceptors: roles in viral entry, tropism, and disease. Annual Review of Immunology. 1999;17:657–700. doi: 10.1146/annurev.immunol.17.1.657. [DOI] [PubMed] [Google Scholar]
  10. Binley J., Moore J. P. The viral mousetrap. Nature. 1997;387:346–348. doi: 10.1038/387346a0. [DOI] [PubMed] [Google Scholar]
  11. Blobel C. P., Myles D. G., Primakoff P., White J. Proteolytic processing of a protein involved in sperm-egg fusion correlates with acquisition of fertilization competence. J. Cell Biol. 1990;111:67–78. doi: 10.1083/jcb.111.1.69. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Blobel C. P., Wolfsberg T. G., Turck C., Myles D. G., Primakoff P., White J. M. A potential fusion peptide and an integrin ligand domain in a protein active in sperm-egg fusion. Nature. 1992;356:248–252. doi: 10.1038/356248a0. [DOI] [PubMed] [Google Scholar]
  13. Blumenthal R., Dimitrov D. S. Membrane fusion. In: Hoffman J. F., Jamieson J. C., editors. Handbook of physiology. New York: Oxford University Press; 1997. pp. 569–604. [Google Scholar]
  14. Bonnafous P., Stegmann T. Membrane perturbation and fusion pore formation in influenza hemagglutinin-mediated membrane fusion. A new model for fusion. J. Biol. Chem. 2000;275:6160–6166. doi: 10.1074/jbc.275.9.6160. [DOI] [PubMed] [Google Scholar]
  15. Booy F. P. Cryoelectron microscopy. In: Bentz J., editor. Viral Fusion Mechanisms. Boca Raton, Ann Arbor, London & Tokyo: CRC Press; 1993. pp. 21–54. [Google Scholar]
  16. Bosch M. L. Identification of the fusion peptide of primate immnodeficiency viruses. Science. 1989;244:694–697. doi: 10.1126/science.2541505. [DOI] [PubMed] [Google Scholar]
  17. Bradshaw J. P., Darkes M. J., Harroun T. A., Katsaras J., Epand R. M. Oblique membrane insertion of viral fusion peptide probed by neuron diffraction. Biochemistry. 2000;39:6581–6585. doi: 10.1021/bi000224u. [DOI] [PubMed] [Google Scholar]
  18. Brasseur R. In: Molecular description of biological membranes by computer aided conformational analysis. Brassuer R., editor. Boca Raton, Ann Arbor, Boston: CRC Press; 1990. [Google Scholar]
  19. Brasseur R. Tilted peptides: a motif for membrane destabilization. Mol. Membr. Biol. 2000;17:31–40. doi: 10.1080/096876800294461. [DOI] [PubMed] [Google Scholar]
  20. Bron R., Wahlberg J. M., Garoff H., Wilschut J. Membrane fusion of SFV in a model system: correlation between fusion kinetics and structure changes in the enû glycoprotein. EMBO J. 1993;12:693–701. doi: 10.1002/j.1460-2075.1993.tb05703.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Brunner J., Tsurudome M. Fusion-protein membrane interactions as studied by hydrophobic photolabeling. In: Bentz J., editor. Viral Fusion Mechanisms. Boca Raton, Ann Arbor, London and Tokyo: CRS Press; 1993. pp. 67–88. [Google Scholar]
  22. Brunner J., Zugliana C., Mischler R. Fusion activity of influenza virus PR8/34 correlates with a temperature-induced conformational change within the hemagglutinin ectodomain detected by photochemical labelling. Biochemistry. 1991;30:2432–2438. doi: 10.1021/bi00223a019. [DOI] [PubMed] [Google Scholar]
  23. Bullough P. A., Hughson F. M., Skehel J. J., Wiley D. C. Structure of influenza hemagglutinin at the pH of membrane fusion. Nature. 1994;371:37–43. doi: 10.1038/371037a0. [DOI] [PubMed] [Google Scholar]
  24. Burger K. N. J. Membrane fusion in model and biological systems: A morphological approach. In: Epand R. M., editor. Lipid Polymorphism and Membrane Properties. San Diego: Academic Press; 1997. pp. 403–445. [Google Scholar]
  25. Burger K. N. J., Wharton S. A., Demel R. A., Verkleij A. J. The interaction of synthetic analogs of the N-terminal fusion sequence of influenza virus with a lipid monolayer. Comparison of fusion-active and fusion-defective analogs. Biochim. Biophys. Acta. 1991;1065:121–129. doi: 10.1016/0005-2736(91)90221-s. [DOI] [PubMed] [Google Scholar]
  26. Caffrey Three-dimensional solution structure of the 44 kDa ectodomain of SIV gp41. EMBO J. 1998;17:4572–4584. doi: 10.1093/emboj/17.16.4572. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Carr C. M., Kim P. S. A spring-loaded mechanism for the conformational change of influenza hemagglutinin. Cell. 1993;73:823–832. doi: 10.1016/0092-8674(93)90260-w. [DOI] [PubMed] [Google Scholar]
  28. Chan D. C., Fass D., Berger J. M., Kim P. S. Core Structure of gp41 from the HIV envelope glycoprotein. Cell. 1997;89:263–273. doi: 10.1016/s0092-8674(00)80205-6. [DOI] [PubMed] [Google Scholar]
  29. Chang D. K., Cheng S. F., Trivedi V. D., Yang S. H. The amino-terminal region of the fusion peptide of influenza virus HA2 inserts into SDS micelles with residues 16–18 at the aqueous boundary at acidic pH: Oligomerization and conformational flexibility. J. Biol. Chem. 2000;275:18424–18431. doi: 10.1074/jbc.M907148199. [DOI] [PubMed] [Google Scholar]
  30. Chang D. K., Cheng S. F., Trivedi V. D. Biophysical characterization of the structure of the amino-terminal region of gp41 of HIV-1. Implications on viral fusion mechanics. J. Biol. Chem. 1999;274:5299–5309. doi: 10.1074/jbc.274.9.5299. [DOI] [PubMed] [Google Scholar]
  31. Chernomordik L., Vogel S. S., Sokoloff A., Onaran H. O., Leikina E. A., Zimmerberg J. Lysolipids reversibly inhibit Ca2C, GTP-and pH-dependent fusion of biological membrane. FEBS Lett. 1993;318:71–76. doi: 10.1016/0014-5793(93)81330-3. [DOI] [PubMed] [Google Scholar]
  32. Chernomordik L. V., Zimmerberg J. Bending membranes to the task: structural intermediates in bilayer fusion. Curr. Opin. Struct. Biol. 1995;5:1–7. doi: 10.1016/0959-440x(95)80041-7. [DOI] [PubMed] [Google Scholar]
  33. Chernomordik L. V., Frolov V. A., Leikina E., Bronk P., Zimmerberg J. The pathway of membrane fusion catalyzed by influenza hemagglutinin: restriction of lipids, hemifusion, and lipidic fusion pore formation. J. Cell Biol. 1988;140:1369–1382. doi: 10.1083/jcb.140.6.1369. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Chizmadzhev Y. A., Kumenko D. A., Kuzmin P. I., Chernomordik L. V., Zimmerberg J., Cohen F. S. Lipid flow through fusion pores connecting membranes of different tensions. Biophys. J. 1999;76:2951–2965. doi: 10.1016/S0006-3495(99)77450-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Chizmadzhev Y. A., Kuzmin P. I., Kumenko D. A., Zimmerberg J., Cohen F. S. Dynamics of fusion pores connecting membranes of different tensions. Biophys. J. 2000;78:2241–2256. doi: 10.1016/S0006-3495(00)76771-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Cladera J., Martin I., Ruysschaert J. M., O'Shea P. Characterisation of the sequence of interaction of the fusion domain of the SIV with membranes. J. Biol. Chem. 1999;42:29951–29959. doi: 10.1074/jbc.274.42.29951. [DOI] [PubMed] [Google Scholar]
  37. Colotto A., Epand R. M. Structural study of the relationship between the rate of membrane fusion and the ability of the fusion peptide of influenza virus to perturb bilayers. Biochemistry. 1997;36:7644–7651. doi: 10.1021/bi970382u. [DOI] [PubMed] [Google Scholar]
  38. Colotto A., Martin I., Ruysschaert J.-M., Sen A., Hui S. W., Epand R. M. Structural study of the interaction between the SIV fusion peptide and model membranes. Biochemistry. 1996;35:980–989. doi: 10.1021/bi951991+. [DOI] [PubMed] [Google Scholar]
  39. Damico R. L., Crane J., Bates P. Receptor-triggered membrane association of a model retroviral glycoprotein. Proc. Natl. Acad. Sci. USA. 1998;95:2580–2585. doi: 10.1073/pnas.95.5.2580. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Darkes M. J., Davies S. M., Bradshaw J. P. X-ray diffraction of feline leukemia virus fusion peptide and lipid polymorphism. FEBS Lett. 1999;461:178–182. doi: 10.1016/s0014-5793(99)01454-4. [DOI] [PubMed] [Google Scholar]
  41. Davies S. M. A., Epand R. F., Bradshaw J. P., Epand R. M. Modification of lipid polymorphism by the feline leukemia virus fusion peptide: implications for the fusion mechanism. Biochemistry. 1998;37:5720–5729. doi: 10.1021/bi980227v. [DOI] [PubMed] [Google Scholar]
  42. Davies S. M. A., Kelly S. M., Price N. C., Bradshaw J. P. Structural plasticity of the feline leukemia virus fusion peptide: a circular dichroism study. FEBS Lett. 1998;425:415–418. doi: 10.1016/s0014-5793(98)00274-9. [DOI] [PubMed] [Google Scholar]
  43. Doms R. W., Lamb R. A., Rose J. K., Helenius A. Folding and assembly of viral membrane proteins. Virology. 1993;193:545–562. doi: 10.1006/viro.1993.1164. [DOI] [PubMed] [Google Scholar]
  44. Durrell S. R., Martin I., Ruysschaert J. M., Shai Y., Blumenthal R. What studies of fusion peptides tell us about viral envelope glycoprotein-mediated membrane fusion. Molec. Memb. Biol. 1997;14:97–112. doi: 10.3109/09687689709048170. [DOI] [PubMed] [Google Scholar]
  45. Durrer P., et al. H+induced membrane insertion of influenza virus hemagglutinin involves the HA2 amino-terminal fusion peptide but not the coiled coil region. J. Biol. Chem. 1996;271:13417–13421. doi: 10.1074/jbc.271.23.13417. [DOI] [PubMed] [Google Scholar]
  46. Durrer P., Gaudin Y., Ruigrok R. W., Graf R., Brunner J. Photolabeling identifies a putative fusion domain in the envelope glycoprotein of rabies and vesicular stomatitis viruses. J. Biol. Chem. 1995;270:17575–17581. doi: 10.1074/jbc.270.29.17575. [DOI] [PubMed] [Google Scholar]
  47. Duzgunes N., Shavnin S. A. Membrane destabilization by N-terminal peptides of viral envelope proteins. J. Membr. Biol. 1992;128:71–80. doi: 10.1007/BF00231872. [DOI] [PubMed] [Google Scholar]
  48. Easterbrook M., Levy M., Gomez A., Turco S., Epand R. M., Rosenthal K. Inhibition of HIV-1 induced syncytia formation and infectivity of LPG from Leishmania. J. AIDS. 1995;10:496–505. [PubMed] [Google Scholar]
  49. Epand R. M. Relationship of phospholipid hexagonal phases to biological phenomena. Biochem. Cell. Biol. 1990;68:17–23. doi: 10.1139/o90-003. [DOI] [PubMed] [Google Scholar]
  50. Epand R. F., Martin I., Ruysschaert J.-M., Epand R. M. Membrane orientation of the SIV fusion peptide determines its effect on bilyaer stability and ability to promote membrane fusion. Biochem. Biophys. Res. Comm. 1994;205:1938–1943. doi: 10.1006/bbrc.1994.2897. [DOI] [PubMed] [Google Scholar]
  51. Epand R. M., Epand R. F. Relationship between the infectivity of influenza virus and the ability of its fusion peptide to perturb bilayers. Biochem. Biophys. Res. Comm. 1994;202:1420–1425. doi: 10.1006/bbrc.1994.2089. [DOI] [PubMed] [Google Scholar]
  52. Epand R. M., Cheetham J. J., Epand R. F., Yeagle P. L., Richardson C. D., Rockwell A., DeGrado W. F. Peptide models for the membrane destabilization actions of viral fusion proteins. Biopolymers. 1992;32:309–314. doi: 10.1002/bip.360320403. [DOI] [PubMed] [Google Scholar]
  53. Evans J. P., Schultz R. M., Kopf G. S. Mouse sperm-egg plasma membrane interactions: analysis of roles of egg integrins and the mouse sperm homologue of PH30 (fertilin) beta. J. Cell Sci. 1995;108:3267–3278. doi: 10.1242/jcs.108.10.3267. [DOI] [PubMed] [Google Scholar]
  54. Fass D., Harrison S. C., Kim P. S. Retrovirus envelope domain at 1.7 Ë resolution. Nature Structural Biology. 1996;3:465–469. doi: 10.1038/nsb0596-465. [DOI] [PubMed] [Google Scholar]
  55. Fredericksen B. L., Whitt M. A. Vesicular stomatitis virus glycoprotein mutations that affect membrane fusion activity and abolish virus infectivity. J. Virol. 1995;69:1435–1443. doi: 10.1128/jvi.69.3.1435-1443.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Freed E. O., Myers D. J., Risser R. Characterization of the fusion domain of the human immunodeficiency virus type 1 envelope glycoprotein gp41. Proc. Natl. Acad. Sci. USA. 1990;87:4650–4654. doi: 10.1073/pnas.87.12.4650. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Gallaher W. R., Ball J. M., Garry R. F., Griffin M. C., Montelaro R. C. A general model for the transmembrane proteins of HIV and other retroviruses. AIDS Res. Hum. Retrov. 1989;5:431–440. doi: 10.1089/aid.1989.5.431. [DOI] [PubMed] [Google Scholar]
  58. Gazit E., Shai Y. Structural characterization, membrane interaction, and specific assembly within phospholipid membranes of hydrophobic segments from bacillus thuringiensis var. israelensis cytolytic toxin. Biochemistry. 1993;32:12363–12371. doi: 10.1021/bi00097a013. [DOI] [PubMed] [Google Scholar]
  59. Gething M. J., Doms R. W., York D., White J. Studies on the mechanism of membrane fusion: site-specific mutagenesis of hemagglutinin of influenza virus. J. Cell Biol. 1986;102:11–23. doi: 10.1083/jcb.102.1.11. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Glabe C. G. Interaction of the sperm adhesive protein, bindin, with phospholipid vesicles. 1. J. Cell. Biol. 1985;100:794–799. doi: 10.1083/jcb.100.3.794. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Glaser R. M., Grüne C., Wandelt C., Ulrich A. S. NMR and CD structural analysis of the fusogenic peptide sequence B18 from the fertilization protein binding. Biochemistry. 1999;38:2560–2569. doi: 10.1021/bi982130e. [DOI] [PubMed] [Google Scholar]
  62. Gonzalez-Scerano F., Waxham M. N., Ross A. M., Hoxie J. A. Sequence similarities between human immunodeficiency virus gp41 and paramyxovirus fusion proteins. AIDS Res. Hum. Retrov. 1987;3:245–252. doi: 10.1089/aid.1987.3.245. [DOI] [PubMed] [Google Scholar]
  63. Goormaghtigh E., Raussens V., Ruysschaert J.-M. Attenuated total reflection Fourier-transform infrared spectroscopy of proteins and lipids in biological membranes. Biochim. Biophys. Acta. 1999;1422:105–185. doi: 10.1016/s0304-4157(99)00004-0. [DOI] [PubMed] [Google Scholar]
  64. Goormaghtigh E., Martin I., Vandenbranden M., Brasseur R., Ruysschaert J.-M. Secondary structure and orientation of a chemically synthesized mitochondrial signal sequence in phospholipid bilayers. Biochem. Biophys. Res. Comm. 1989;158:610–616. doi: 10.1016/s0006-291x(89)80093-2. [DOI] [PubMed] [Google Scholar]
  65. Gordon L. M., Curtain C. C., Zhong Y. C., Kirkpatrick A., Mobley P. W., Waring A. J. The amino-terminal peptide of HIV-1 glycoprotein 41 interacts with human erythrocyte membranes: peptide conformation, orientation and aggregation. Biochim. Biophys. Acta. 1992;1139:257–274. doi: 10.1016/0925-4439(92)90099-9. [DOI] [PubMed] [Google Scholar]
  66. Gray C., Tamm L. K. pH-induced conformational changes of membrane-bound influenza hemagglutinin and its effect on target lipid bilayers. Protein Sci. 1998;7:2359–2373. doi: 10.1002/pro.5560071113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. Gray C., Tatulian S. A., Wharton S. A., Tamm L. K. Effect of the N-terminal glycine on the secondary structure, orientation, and interaction of the influenza-hemagglutinin fusion peptide with lipid bilayers. Biophys. J. 1996;70:2275–2286. doi: 10.1016/S0006-3495(96)79793-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  68. Gunther-Ausborn S., Praetor A., Stegmann T. Inhibition of influenza-induced membrane fusion by lyso PC. J. Biol. Chem. 1995;49:29279–29825. doi: 10.1074/jbc.270.49.29279. [DOI] [PubMed] [Google Scholar]
  69. Harter C., Bachi T., Semenza G., Brunner J. Hydrophobic photolabeling identifies BHA2 as the subunit mediating the interaction of bromelain-solubilized influenza virus hemagglutinin with liposomes at low pH. Biochemistry. 1988;27:1856–1864. doi: 10.1021/bi00406a010. [DOI] [PubMed] [Google Scholar]
  70. Harter C., James P., Bachi T., Semenza G., Brunner J. Hydrophobic binding of the ectodomain of influenza hemagglutinin to membranes occurs through the fusion peptide. J. Biol. Chem. 1989;264:6459–6464. [PubMed] [Google Scholar]
  71. Henderson L. A., Qureshi N. N. A peptide inhibitor of HIV infection binds to nodule human cell surface polypeptides. J. Biol. Chem. 1993;268:15291–15297. [PubMed] [Google Scholar]
  72. Hernandez L. D., Hoffman L. R., Woflsberg T. G., White J. M. Virus-cell and cell-cell fusion. Annu. Rev. Cell. Dev. Biol. 1996;12:627–661. doi: 10.1146/annurev.cellbio.12.1.627. [DOI] [PubMed] [Google Scholar]
  73. Hoffman A., Glabe C. G. Bindin, a multifunctional sperm ligand and the evolution of new species. Semin. Dev. Biol. 1994;5:233–242. [Google Scholar]
  74. Horth M. Theoretical and functional analysis of the SIV fusion peptide. EMBO Journal. 1991;10:2747–2755. doi: 10.1002/j.1460-2075.1991.tb07823.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  75. Horvath C. M., Lamb R. A. Studies on the fusion peptide of a paramyxovirus fusion glycoprotein: roles of conserved residues in cell fusion. J. Virol. 1992;66:2443–2455. doi: 10.1128/jvi.66.4.2443-2455.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  76. Hughson F. M. Molecular mechanisms of protein-mediated membrane fusion. Curr. Opin. Struct. Biol. 1995;5:507–513. doi: 10.1016/0959-440x(95)80036-0. [DOI] [PubMed] [Google Scholar]
  77. Ishiguro R., Kimura N., Takahashi S. Orientation of fusion active synthetic peptides in phospholipid bilayers: determination by Fourier transform infrared spectroscopy. Biochemistry. 1993;32:9792–9797. doi: 10.1021/bi00088a034. [DOI] [PubMed] [Google Scholar]
  78. Ishiguro R., Matsumoto M., Takahashi S. Interaction of fusogenic synthetic peptide with phospholipid bilayers: orientation of the peptide alpha-helix and binding isotherm. Biochemistry. 1996;35:4976–4983. doi: 10.1021/bi952547+. [DOI] [PubMed] [Google Scholar]
  79. Jahn R., Südhof T. Membrane fusion and exocytosis. Annu. Rev. Biochem. 1999;68:863–911. doi: 10.1146/annurev.biochem.68.1.863. [DOI] [PubMed] [Google Scholar]
  80. Jahn R., Hanson P. I. SNAREs line up in new environment. Nature. 1998;393:14–15. doi: 10.1038/29871. [DOI] [PubMed] [Google Scholar]
  81. Jahn R., Südhof T. Synaptic vesicles and exocytosis. Annu. Rev. Neurosci. 1994;17:219–246. doi: 10.1146/annurev.ne.17.030194.001251. [DOI] [PubMed] [Google Scholar]
  82. Kemble G. W., Danieli T., White J. M. Lipid-anchored influenza hemagglutinin promotes hemifusion, not complete fusion. Cell. 1994;76:383–391. doi: 10.1016/0092-8674(94)90344-1. [DOI] [PubMed] [Google Scholar]
  83. Kliger Y., Aharoni A., Rapaport D., Jones P., Blumenthal R., Shai Y. Fusion peptides derived from the HIV type 1 glycoprotein 41 associate within phospholipid membranes and inhibit cell-cell fusion: structure-function study. J. Biol. Chem. 1997;272:13496–13505. doi: 10.1074/jbc.272.21.13496. [DOI] [PubMed] [Google Scholar]
  84. Kobe B., Center R. J., Kemp B. E., Poumbouris P. Crystal structure of human T cell leukemia virus type 1 gp21 ectodomain crystallized as a maltose-binding protein chimera reveals structural revolution of retroviral transmembrane proteins. Proc. Natl. Acad. Sci. USA. 1999;96:4319–4324. doi: 10.1073/pnas.96.8.4319. [DOI] [PMC free article] [PubMed] [Google Scholar]
  85. Kondo H. p47 is a cofactor for p97-mediated membrane fusion. Nature. 1997;388:75–78. doi: 10.1038/40411. [DOI] [PubMed] [Google Scholar]
  86. Körte T. K., Ludwig M., Booy F. P., Blumenthal R., Herman A. Conformational intermediates and fusion activity of influenza virus hemagglutinin. J. Virol. 1999;73:4567–4574. doi: 10.1128/jvi.73.6.4567-4574.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  87. Körte T. K., Ludwig M., Krumbiegel D., Zirwer G., Damaschun G., Hermann A. Transient changes of the conformation of hemagglutinin of influenza virus at low pH detected by timeresolved circular dichroism spectroscopy. J. Biol. Chem. 1997;272:9764–9770. doi: 10.1074/jbc.272.15.9764. [DOI] [PubMed] [Google Scholar]
  88. Kozlov M. M., Chernomordik L. V. A mechanism of protein-mediated fusion: coupling between refolding of the influenza hemagglutinin and rearrangements. Biophys. J. 1998;75:1384–1396. doi: 10.1016/S0006-3495(98)74056-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  89. Lear J. D., DeGrado W. F. Membrane binding and conformational properties of peptides representing the NH2 terminus of influenza HA-2. J. Biol. Chem. 1987;262:6500–6505. [PubMed] [Google Scholar]
  90. Lüneberg J., Martin I., Nussler F., Ruysschaert J.-M., Herrmann A. Structure and topology of the influenza virus fusion peptide in lipid bilayers. J. Biol. Chem. 1995;270:27606–27614. doi: 10.1074/jbc.270.46.27606. [DOI] [PubMed] [Google Scholar]
  91. Macosko J. C., Kim C. H., Shin Y. K. The membrane topology of the fusion peptide region of influenza hemagglutinin determined by spin-labeling EPR. J. Mol. Biol. 1997;267(5):1139–1148. doi: 10.1006/jmbi.1997.0931. [DOI] [PubMed] [Google Scholar]
  92. Malashkevich V. N., Chan D. C., Chutkowski C. T., Kim P. S. Crystal structure of the simian immunodeficiency virus (SIV) gp41 core: conserved helical interactions underlie the broad inhibitory activity of gp41 peptides. Proc. Natl. Acad. Sci. USA. 1998;95:9134–9139. doi: 10.1073/pnas.95.16.9134. [DOI] [PMC free article] [PubMed] [Google Scholar]
  93. Marsh M., Helenius A. Virus entry into animal cells. Adv. Virus Res. 1989;36:107–151. doi: 10.1016/S0065-3527(08)60583-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  94. Martin I. Fusogenic activity of SIV (simian immunodeficiency virus) peptides located in the GP32 NH2 terminal domain. Biochem. Biophys. Res. Comm. 1991;175:872–879. doi: 10.1016/0006-291x(91)91646-t. [DOI] [PubMed] [Google Scholar]
  95. Martin I., Ruysschaert J.-M. LysoPC inhibits vesicles fusion induced by the NH2 terminal extremity of SIV/HIV fusogenic proteins. FEBS Letters. 1997;405:351–355. [Google Scholar]
  96. Martin I., Ruysschaert J.-M. Lysophophatidylcholine inhibits vesicles fusion induced by the NH2-terminal extremity of SIV/HIV fusogenic proteins. Biochim. Biophys. Acta. 1995;1240:95–100. doi: 10.1016/0005-2736(95)00171-4. [DOI] [PubMed] [Google Scholar]
  97. Martin I. Study of the interaction between lipids and the NH2-terminal peptide of HIV fusion protein. Advances in Membrane Fluidity. 1992;6:365–376. [Google Scholar]
  98. Martin I., Defrise-Quertain F., Decroly E., Vanderbranden M., Brasseur R., Ruysschaert J.-M. Orientation and structure of the NH2-terminal HIV-1 gp41 peptide in fused and aggregated liposomes. Biochim. Biophys. Acta. 1993;1145:124–133. doi: 10.1016/0005-2736(93)90389-h. [DOI] [PubMed] [Google Scholar]
  99. Martin I. Correlation between fusogenicity of synthetic modified peptides corresponding to the NH2-terminal extremity of simian immunodeficiency virus gp32 and their mode of insertion into the lipid bilayer: an infrared spectroscopy study. J. Virol. 1994;68:1139–1148. doi: 10.1128/jvi.68.2.1139-1148.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  100. Martin I., Pécheur E. I., Ruysschaert M., Hoekstra D. Membrane fusion induced by a short fusogenic peptide is assessed by its insertion and orientation into target bilayers. Biochemistry. 1999;38:9337–9347. doi: 10.1021/bi9829534. [DOI] [PubMed] [Google Scholar]
  101. Martin I., Schaal H., Scheid A., Ruysschaert J.-M. Lipid membrane fusion induced by the human immunodeficiency virus type 1 gp41 N-terminal extremity is determined by its orientation in the lipid bilayer. J. Virol. 1996;70:298–304. doi: 10.1128/jvi.70.1.298-304.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  102. Martin I., Turco S. J., Epand R. M., Ruysschaert J.-M. Lipophosphoglycan of Leishmania donovani inhibits lipid vesicle fusion induced by the N-terminal extremity of viral fusogenic SIV protein. Eur. J. Biochem. 1998;258:150–6. doi: 10.1046/j.1432-1327.1998.2580150.x. [DOI] [PubMed] [Google Scholar]
  103. Mayer A. Intracellular membrane fusion: SNAREs only. Curr. Opin. Cell Biol. 1999;11:447–452. doi: 10.1016/S0955-0674(99)80064-7. [DOI] [PubMed] [Google Scholar]
  104. McNew J. A., Weber T., Engelman O. M., Söllner T. H., Tothman J. E. The length of the flexible SNAREpin juxtamembrane region is a critical determinant of SNARE-dependent fusion. Mol. Cells. 1999;4:415–421. doi: 10.1016/s1097-2765(00)80343-3. [DOI] [PubMed] [Google Scholar]
  105. Melikyan G. B., White J. M., Cohen F. S. GPI-anchored influenza hemagglutinin induces hemifusion to both red blood cell and planar bilayer membranes. J. Cell Biol. 1995;131:679–691. doi: 10.1083/jcb.131.3.679. [DOI] [PMC free article] [PubMed] [Google Scholar]
  106. Miao L., Stafford A., Nir S., Turco S., Flanagan T., Epand R. M. Potent inhibition of viral fusion by LPG of L. Donovani. Biochemistry. 1995;4:4676–4682. doi: 10.1021/bi00014a022. [DOI] [PubMed] [Google Scholar]
  107. Muga A., Neugebauer W., Hirama T., Surewicz W. K. Membrane interaction and conformational properties of the putative fusion peptide of PH-30, a protein active in sperm-egg fusion. Biochemistry. 1994;33:4444–4448. doi: 10.1021/bi00181a002. [DOI] [PubMed] [Google Scholar]
  108. Murata M., Sugahara Y., Takahashi S., Ohnishi S. I. pH-Dependent membrane fusion activity of a synthetic twenty amino acid peptide with the same sequence as that of the hydrophobic segment of influenza virus hemagglutinin. J. Biochem. 1987;102:957–962. doi: 10.1093/oxfordjournals.jbchem.a122137. [DOI] [PubMed] [Google Scholar]
  109. Murata M., Takahashi S., Kagiwada S., Suzuki A., Ohnishi S. I. pH-Dependent membrane fusion and vesiculation of phospholipid large unilamellar vesicles induced by amphiphilic anionic and catonic peptides. Biochemistry. 1992;31:1986–1992. doi: 10.1021/bi00122a013. [DOI] [PubMed] [Google Scholar]
  110. Myles D. G., Kimmel L. H., Blobel C. P., White J. M., Primakoff P. Identification of a binding site in the disintegrin domain of fertilin required for sperm-egg fusion. Proc. Natl. Acad. Sci. USA. 1994;91:4195–4198. doi: 10.1073/pnas.91.10.4195. [DOI] [PMC free article] [PubMed] [Google Scholar]
  111. Nieva J. L., Nir S., Muga A., Goni F. M., Wilschut J. Interaction of the HIV-1 fusion peptide with phospholipid vesicles: different structural requirements for fusion and leakage. Biochemistry. 1994;33:3201–3209. doi: 10.1021/bi00177a009. [DOI] [PubMed] [Google Scholar]
  112. Niidome T., Kimura M., Chiba T., Ohmon N., Mihara H., Aoyagi H. Membrane interaction of synthetic peptides related to the putative fusogenic region of PH-30, a protein in sperm-egg fusion. J. Pept. Res. 1997;49:563–569. doi: 10.1111/j.1399-3011.1997.tb01164.x. [DOI] [PubMed] [Google Scholar]
  113. Ohnishi S. I. Fusion of viral envelopes with cellular membranes. Current Topics in Membranes and Transport. 1988;32:257–296. doi: 10.1016/S0070-2161(08)60137-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  114. Pécheur E. I., Hoekstra D., Sainte-Marie J., Maurin L., Bienvenüe A., Philipott J. R. Membrane anchorage brings about fusogenic properties in a short synthetic peptide. Biochemistry. 1997;36:3773–3781. doi: 10.1021/bi9622128. [DOI] [PubMed] [Google Scholar]
  115. Pécheur E. I., Martin I., Bienvenüe A., Ruysschaert J.-M., Hoekstra D. Membrane fusion induced by 11-mer anionic and cationic peptides: a structure-function study. Biochemistry. 1998;37:2361–2371. doi: 10.1021/bi972697f. [DOI] [PubMed] [Google Scholar]
  116. Pécheur E. I., Martin I., Bienvenüe A., Hoekstra D. Peptides and membrane fusion: towards an understanding of the molecular mechanism of protein-induced fusion. J. Membr. Biol. 1999;167:1–17. doi: 10.1007/s002329900466. [DOI] [PubMed] [Google Scholar]
  117. Pécheur E. I., Sainte-Marie J., Bienvenüe A., Hoekstra D. Lipid headgroup spacing and peptide penetration, but not peptide oligomerization, modulate peptide-induced fusion. Biochemistry. 1999;38:364–373. doi: 10.1021/bi981389u. [DOI] [PubMed] [Google Scholar]
  118. Pécheur E. I., Martin I., Bienvenüe A., Ruysschaert J.-M., Hoekstra D. Protein-induced fusion can be modulated by target membrane lipids through a structural switch at the level of the fusion peptide. J. Biol. Chem. 2000;275:3936–3942. doi: 10.1074/jbc.275.6.3936. [DOI] [PubMed] [Google Scholar]
  119. Pereira F. B., Valpuesta J. M., Basanez G., Goni F. M., Nieva J. L. Interbilayer lipid mixing induced by the HIV-1 fusion peptide on LUV: the nature of nonlamellar intermediates. Chem. Phys. Lipids. 1999;103:11–20. doi: 10.1016/s0009-3084(99)00087-0. [DOI] [PubMed] [Google Scholar]
  120. Pereira F. B., Goni F. M., Muga A., Nieva J. L. Permeabilization and fusion of unchanged lipid vesicles induced by the HIV-1 fusion peptide adopting an extended conformation: dose and sequence effects. Biophys. J. 1997;73:1977–1986. doi: 10.1016/S0006-3495(97)78228-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  121. Pereira F. B., Goni F. M., Nieva J. L. Liposome destabilization induced by the HIV-1 fusion peptide effect of a single amino acid substitution. FEBS Lett. 1995;362:243–246. doi: 10.1016/0014-5793(95)00257-a. [DOI] [PubMed] [Google Scholar]
  122. Primakoff P., Hyatt D. G., TredickKline J. Identification and purification of a sperm surface protein with a potential role in sperm-egg membrane fusion. J. Cell Biol. 1987;104:141–149. doi: 10.1083/jcb.104.1.141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  123. Pritsker M., Rucker J., Hoffman T. L., Doms R. W., Shai Y. Effect of nonpolar substitutions of the conserved Phe11 in the fusion peptide of HIV-1 gp41 on its function, structure, and organization in membranes. Biochemistry. 1999;38:11359–11371. doi: 10.1021/bi990232e. [DOI] [PubMed] [Google Scholar]
  124. Rafalski M., Lear J. D., DeGrado W. F. Phospholipid interactions of synthetic peptides representing the N-terminus of HIV gp41. Biochemistry. 1990;29:7917–7922. doi: 10.1021/bi00486a020. [DOI] [PubMed] [Google Scholar]
  125. Rafalski M. Membrane fusion activity of the influenza virus hemagglutinin: interaction of HA2 N-terminal peptides with phospholipid vesicles. Biochemistry. 1991;30:10211–10220. doi: 10.1021/bi00106a020. [DOI] [PubMed] [Google Scholar]
  126. Rapaport D., Shai Y. Interaction of fluorescently labeled analogues of the amino-terminal fusion peptide of Sendai virus with phospholipid membranes. J. Biol. Chem. 1994;269:15124–15131. [PubMed] [Google Scholar]
  127. Razinkov V. I., Melikyan G. B., Cohen F. S. Lipid continuity between cells expressing hemagglutinin (HA) from influenza virus and planar bilayer membranes can precede the formation of fusion pores that fully enlarge. Biophys. J. 1999;76:A437. doi: 10.1016/S0006-3495(99)77144-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  128. Razinkov V. I., Melikyan G. B., Cohen F. S. Hemifusion between cells expressing hemagglutinin of influenza virus and planar membranes can precede the formation of fusion pores that subsequently fully enlarge. Biophys. J. 1999;77:3144–3151. doi: 10.1016/S0006-3495(99)77144-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  129. Schaal H., Klein M., Gehrman P., Adams O., Scheid A. Requirement of N-terminal amino acid residues of gp41 for human immunodeficiency virus type-1 mediated cell fusion. J. Virol. 1995;69:3308–3314. doi: 10.1128/jvi.69.6.3308-3314.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  130. Shangguan T. D., Siegel J., Lear P., Axelsen D., Alford D., Bentz J. Morphological changes and fusogenic activity of influenza virus hemagglutin. Biophys. J. 1998;74:54–62. doi: 10.1016/S0006-3495(98)77766-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  131. Snell W., White J. M. The molecules of mammalian fertilization. Cell. 1996;85:629–637. doi: 10.1016/s0092-8674(00)81230-1. [DOI] [PubMed] [Google Scholar]
  132. Steffy K. R., Kraus G., Looney D. J., Wong-Staal F. Role of the fusogenic peptide sequence in syncytium induction and infectivity of human immunodeficiency virus type 2. J. Virol. 1992;66:4532–4535. doi: 10.1128/jvi.66.7.4532-4535.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  133. Stegmann T., Delfino J. M., Richards F. M., Helenius A. The HA2 subunit of influenza hemagglutinin inserts into the target membrane prior to fusion. J. Biol. Chem. 1991;266:18404–18410. [PubMed] [Google Scholar]
  134. Tamm L. K., Tatulian S. A. Infrared spectroscopy of proteins and peptides in lipid bilayers. Quat. Rev. Biophys. 1997;30:365–429. doi: 10.1017/s0033583597003375. [DOI] [PubMed] [Google Scholar]
  135. Takahashi S. Conformation of membrane fusion-active 20 residues peptides with or without lipid bilayers. Implication of ?-helix formation for membrane fusion. Biochemistry. 1990;29:6257–6264. doi: 10.1021/bi00478a021. [DOI] [PubMed] [Google Scholar]
  136. Ulrich A. S., Otter M, Glabe C. G., Hoekstra D. Membrane fusion is induced by a distinct peptide sequence of the sea urchin fertilization protein bindin. J. Biol. Chem. 1998;273:16748–16755. doi: 10.1074/jbc.273.27.16748. [DOI] [PubMed] [Google Scholar]
  137. Ulrich A. S., Tichelaar W., Förster G., Zschörnig O., Weinkauf S., Meyer H. W. Ultrastructural characterization of peptide-induced membrane fusion and peptide self-assembly in the lipid bilayer. Biophys. J. 1999;77:829–841. doi: 10.1016/S0006-3495(99)76935-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  138. Vacquier V. D., Swanson W. M., Hellberg M. E. What have we learned about sea urchin sperm bindin. Dev. Growth Differ. 1995;73:1–10. doi: 10.1046/j.1440-169X.1995.00001.x. [DOI] [PubMed] [Google Scholar]
  139. Vonećhe V. Fusogenic segments of bovine leukemia virus and simian immunodeficiency virus are interchangeable and mediate fusion via oblique insertion in the lipid bilayer or their target cells. Proc. Natl. Acad. Sci. USA. 1992;89:3810–3814. doi: 10.1073/pnas.89.9.3810. [DOI] [PMC free article] [PubMed] [Google Scholar]
  140. Weber T. SNAREpins: minimal machinery for membrane fusion. Cell. 1998;92:759–772. doi: 10.1016/s0092-8674(00)81404-x. [DOI] [PubMed] [Google Scholar]
  141. Weissenhorn W., Dressen A., Calder L. J., Harrison S. C., Skehel J. J., Wiley D. C. Structural basis for membrane fusion by enveloped viruses. Mol. Membr. Biol. 1999;16:3–9. doi: 10.1080/096876899294706. [DOI] [PubMed] [Google Scholar]
  142. Weissenhorn W., Dessen A., Harrison S. C., Skehel J. J., Wiley D. C. Atomic structure of the ectodomain from HIV-1 gp41. Nature. 1997;387:426–430. doi: 10.1038/387426a0. [DOI] [PubMed] [Google Scholar]
  143. Wharton S. A., Martin S. R., Ruigrok R. W. H., Skehel J. J., Wiley D. C. Membrane fusion by peptide analogues of influenza virus haemagglutinin. J. Gen. Virol. 1988;69:1847–1857. doi: 10.1099/0022-1317-69-8-1847. [DOI] [PubMed] [Google Scholar]
  144. White J. M. Viral and cellular membrane fusion proteins. Ann. Rev. Physiol. 1990;52:675–697. doi: 10.1146/annurev.ph.52.030190.003331. [DOI] [PubMed] [Google Scholar]
  145. White J. M. Membrane fusion. Science. 1992;258:917–924. doi: 10.1126/science.1439803. [DOI] [PubMed] [Google Scholar]
  146. Whitt M. A., Zagouras P., Crise B., Rose J. K. A fusion-defective mutant of the vesicular stomatitis virus glycoprotein. J. Virol. 1990;64:4907–4913. doi: 10.1128/jvi.64.10.4907-4913.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  147. Wilson I. A., Skehel J. J., Wiley D. C. Structure of the haemagglutinin membrane glycoprotein of influenza virus at 3 angstroms resolution. Nature. 1981;289:366–373. doi: 10.1038/289366a0. [DOI] [PubMed] [Google Scholar]
  148. Wolfe C. A., Cladera J., Ladha S., Senior S., Jones R., O'Shea P. Membrane interactions of the putative fusion peptide from fertilin, the mouse sperm protein complex involved in fertilization. Mol. Membr. Biol. 1999;16:257–263. doi: 10.1080/096876899294571. [DOI] [PubMed] [Google Scholar]
  149. Woflsberg T., Bazan F., Blobel C., Myles D., Primakoff P., White J. The precursor region of a protein active in sperm-egg fusion contains a metalloprotease and a disintegrin domain: structural, functional and evolutionary implications. Proc. Natl. Acad. Sci. USA. 1993;90:10783–10787. doi: 10.1073/pnas.90.22.10783. [DOI] [PMC free article] [PubMed] [Google Scholar]
  150. Woflsberg T. G., Primakoff P., Myles D. G., White J. M. ADAM, a novel family of membrane proteins containing A Disintegrin and Metalloprotease domain: multipotential functions in cell-cell and cell-matrix interactions. J. Cell Biol. 1995;131:275–278. doi: 10.1083/jcb.131.2.275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  151. Zhang L., Ghosh H. P. Characterization of the putative fusogenic domain in vesicular stomatitis virus glycoprotein G. J. Virol. 1994;68:2186–2193. doi: 10.1128/jvi.68.4.2186-2193.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Bioscience Reports are provided here courtesy of Nature Publishing Group

RESOURCES