Abstract
A mutation shown to cause resistance to chloramphenicol inSaccharomyces cerevisiae was mapped to the central loop in domain V of the yeast mitochondrial 21S rRNA. The mutant 21S rRNA has a base pair exchange from U2677 (corresponding to U2504 inEscherichia coli) to C2677, which significantly reduces rightward frameshifting at a UU UUU UCC A site in a + 1 U mutant. There is evidence to suggest that this reduction also applies to leftward frameshifting at the same site in a − 1 U mutant. The mutation did not increase the rate of misreading of a number of mitochondrial missense, nonsense or frameshift (of both signs) mutations, and did not adversely affect the synthesis of wild-type mitochondrial gene products. It is suggested here that ribosomes bearing either the C2677 mutation or its wild-type allele may behave identically during normal decoding and only differ at sites where a ribosomal stall, by permitting non-standard decoding, differentially affects the normal interaction of tRNAs with the chloramphenicol resistant domain V. Chloramphenicol-resistant mutations mapping at two other sites in domain V are described. These mutations had no effect on frameshifting.
Key words: Chloramphenicol resistance, frameshifting Mitochondria, 21S rRNA, Yeast
References
- Allen PN, Noller HF. Mutations in ribosomal proteins S4 and S12 influence the higher order structure of 16S ribosomal RNA. J Mol Biol. 1989;208:457–468. doi: 10.1016/0022-2836(89)90509-3. [DOI] [PubMed] [Google Scholar]
- Allen PN, Noller HF. A single base substitution in 16S ribosomal RNA suppresses streptomycin dependence and increases the frequency of translational errors. Cell. 1991;66:141–148. doi: 10.1016/0092-8674(91)90146-p. [DOI] [PubMed] [Google Scholar]
- Atkins JF, Weiss RB, Gesteland RF. Ribosome gymnastics - degree of difficulty 9.5, style 10.0. Cell. 1990;62:413–423. doi: 10.1016/0092-8674(90)90007-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Atkins JF, Gesteland R. Skipping base(s) or braking an initial engagement and repairing to a new triplet codon are involved in natural frameshifting and hopping. In: Söll D, Rajbhandary U, editors. Transfer RNA. Washington DC: American Society for Microbiology; 1994. pp. 471–490. [Google Scholar]
- Ballesta JPG, Lazaro E. Peptidyltransferase inhibitors: structure-activity relationship analysis by chemical modification. In: Hill WE, Dahlberg A, Garrett RA, Moore PB, Schlessinger D, Warner JR, editors. The ribosome: structure, function and evolution. Washington DC: American Society for Microbioliology; 1990. pp. 502–510. [Google Scholar]
- Belcourt MF, Farabaugh PJ. Ribosomal frameshifting in the yeast retrotransposon Ty: tRNAs induce slippage of a 7-nucleotide minimal site. Cell. 1990;62:339–352. doi: 10.1016/0092-8674(90)90371-K. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brierley I, Digard P, Inglis SC. Characterization of an efficient coronavirus ribosomal frameshifting signal: requirement for an RNA pseudoknot. Cell. 1989;57:537–547. doi: 10.1016/0092-8674(89)90124-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brierley I, Jenner AJ, Inglis SC. Mutational analysis of the ‘slippery-sequence’ component of a coronavirus ribosomal frameshifting signal. J Mol Bio. 1992;227:463–479. doi: 10.1016/0022-2836(92)90901-U. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Celma ML, Monro RE, Vazquez D. Substrate and antibiotic binding sites at the peptidyltransferase centre ofE. coli ribosomes. FEBS Lett. 1970;6:273–277. doi: 10.1016/0014-5793(70)80076-x. [DOI] [PubMed] [Google Scholar]
- Chamorro M, Parkin N, Varmus HE. An RNA pseudoknot and an optimal heptameric shift site are required for highly efficient ribosomal frameshifting on a retroviral messenger RNA. Proc Natl Acad Sci USA. 1992;89:713–717. doi: 10.1073/pnas.89.2.713. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chen E, Seeburg PH. Supercoil sequencing: a fast and simple method for sequencing plasmid DNA. DNA. 1985;4:165–170. doi: 10.1089/dna.1985.4.165. [DOI] [PubMed] [Google Scholar]
- Dix DB, Thomas LK, Thompson RC. Codon choice and gene expression: synonymous codons differ in translational efficiency and translational accuracy. In: Hill WE, Dahlberg A, Garrett RA, Moore PB, Schlessinger D, Warner JR, editors. The ribosome: structure, function and evolution. Washington DC: American Society for Microbiology; 1990. pp. 527–533. [Google Scholar]
- Dujon B. Sequence of the intron and flanking exons of the mitochondrial 21S rRNA gene of yeast strains having different alleles at the ω andrib-1 loci. Cell. 1980;20:185–197. doi: 10.1016/0092-8674(80)90246-9. [DOI] [PubMed] [Google Scholar]
- Dujon B, Jacquier A. Organization of the mitochondrial 21S rRNA gene inSaccharomyces cerevisiae: mutants of the peptidyltransferase centre and nature of the omega locus. In: Schweyen RJ, Wolf K, Kaudewitz F, editors. Mitochondria 1983. Nucleo-mitochondrial interactions. Berlin: De Gruyter; 1983. pp. 389–403. [Google Scholar]
- Farabaugh PJ, Zhao H, Vimaladithan A. A novel programed frameshift expresses thePOL3 gene of retrotransposon Ty3 of yeast: frameshifting without tRNA slippage. Cell. 1993;74:93–103. doi: 10.1016/0092-8674(93)90297-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fox TD. Five TGA ‘stop’ codons occur within the translated sequence of the yeast mitochondrial gene for cytochrome c oxidase subunit II. Proc Natl Acad Sci USA. 1979;76:6534–6538. doi: 10.1073/pnas.76.12.6534. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fox TD, Weiss-Brummer B. Leaky + 1 and − 1 frameshift mutants at the same site in a yeast mitochondrial gene. Nature. 1980;288:60–63. doi: 10.1038/288060a0. [DOI] [PubMed] [Google Scholar]
- Fox TD, Staempfli S. Suppressor of yeast mitochondrial ochre mutations that maps in or near the 15S rRNA gene of mitochondrial DNA. Proc Natl Acad Sci USA. 1982;79:1583–1587. doi: 10.1073/pnas.79.5.1583. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gallant JA, Lindsley D. Leftward ribosome frameshifting at a hungry codon. J Mol Biol. 1992;223:31–40. doi: 10.1016/0022-2836(92)90713-t. [DOI] [PubMed] [Google Scholar]
- Gesteland RF, Weiss RB, Atkins JF. Recoding: reprogrammed genetic decoding by special sequences in mRNAs. Science. 1992;257:1640–1641. doi: 10.1126/science.1529352. [DOI] [PubMed] [Google Scholar]
- Haid A, Schweyen RJ, Bechmann H, Kaudewitz F, Solioz M, Schatz G. The mitochondrialCOB region in yeast codes for apocytochromeb and is mosaic. Eur J Biochem. 1979;94:451–464. doi: 10.1111/j.1432-1033.1979.tb12913.x. [DOI] [PubMed] [Google Scholar]
- Hall CC, Johnson D, Cooperman BS. [3H]-p-Azido-puromycin photoaffinity labeling ofEscherichia coli ribosomes: evidence for site-specific interaction at U-2504 and G-2502 in Domain V of 23S ribosomal RNA. Biochemistry. 1988;27:3983–3990. doi: 10.1021/bi00411a014. [DOI] [PubMed] [Google Scholar]
- Hatfield DL, Levin JG, Rein A, Oroszlan S. Translational suppression in retroviral gene expression. Adv Virus Res. 1992;41:193–239. doi: 10.1016/S0065-3527(08)60037-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Huang WM, Ao S-Z, Casjens S, Orlani R, Zeikus R, Weiss R, Winge D, Fang M. A persistent untranslated sequence within bacteriophage T4 DNA topoisomerase gene 60. Science. 1988;239:1005–1012. doi: 10.1126/science.2830666. [DOI] [PubMed] [Google Scholar]
- Jacks T, Power MD, Masiarz PP, Luciw P, Bar PJ, Varmus HE. Characterization of ribosomal frameshifting in HIVgag-pol expression. Nature. 1988;331:280–283. doi: 10.1038/331280a0. [DOI] [PubMed] [Google Scholar]
- Kawakami K, Pande S, Faiola B, Moore DP, Boeke JD, Farabaugh PJ, Strathern JN, Nakamura Y, Garfinkel DJ. A rare tRNA-Arg(CCU) that regulates Tyl element ribosomal frame-shifting is essential for Ty1 retrotransposition inSaccharomces cerevisiae. Genetics. 1993;135:309–320. doi: 10.1093/genetics/135.2.309. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kirsebom LA, Isaksson LA. Involvement of ribosomal protein L7/L12 in control of translational accuracy. Proc Natl Acad Sci USA. 1985;82:717–721. doi: 10.1073/pnas.82.3.717. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kolor K, Lindsley D, Gallant JA. On the role of the P-site in leftward ribosomal frameshifting at a hungry codon. J Mol Biol. 1993;230:1–5. doi: 10.1006/jmbi.1993.1118. [DOI] [PubMed] [Google Scholar]
- Kotylak Z, Slonimski PP. Mitochondrial mutants isolated by a new screening method based upon the use of the nuclear mutationop1. In: Bandlow W, Schweyen RJ, Wolf K, Kaudewitz F, editors. Mitochondria 1977: Genetics and biogenesis of mitochondria. Berlin: De Gruyter; 1977. pp. 83–89. [Google Scholar]
- Lancashire WE, Mattoon JR. Cytoduction: a tool for mitochondrial genetics studies in yeast. Mol Gen Genet. 1979;170:333–344. doi: 10.1007/BF00267067. [DOI] [PubMed] [Google Scholar]
- Lazowska J, Gargouri A, Slonimski PP. The corrected sequence of the first intron of thecob-box gene in the yeast strain 777-3A. In: Schweyen RJ, Wolf K, Kaudewitz F, editors. Mitochondria 1983. Berlin: De Gruyter; 1983. pp. 405–410. [Google Scholar]
- Le S-Y, Chen J-H, Maizel JV. Identification of unusual RNA folding pattern encoded by bacteriphage T4 gene 60. Gene. 1993;124:21–28. doi: 10.1016/0378-1119(93)90757-T. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Melançon P, Tapprich WE, Brakier-Gingras L. Single base mutations at the position 2661 ofEscherichia coli 23S rRNA increase efficiency of translational proofreading. J Bacteriol. 1992;174:7896–7901. doi: 10.1128/jb.174.24.7896-7901.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moazed D, Noller HF. Chloramphenicol, erythromycin, carbomycin and vernamycin B protect overlapping sites in the peptidyltransferase region of 23S ribosomal RNA. Biochimie. 1987;69:879–884. doi: 10.1016/0300-9084(87)90215-x. [DOI] [PubMed] [Google Scholar]
- Moazed D, Noller HF. Interaction of tRNA with 23S rRNA in the ribosomal A, P, and E sites. Cell. 1989;57:585–597. doi: 10.1016/0092-8674(89)90128-1. [DOI] [PubMed] [Google Scholar]
- Moazed D, Noller HF. Sites of interaction of the CCA end of the peptidyl-tRNA with 23S rRNA. Proc Natl Acad Sci USA. 1991;88:3725–3728. doi: 10.1073/pnas.88.9.3725. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Monro RE, Vazquez D. Ribosome-catalysed peptidyl transfer: effects of some inhibitors of protein synthesis. J Mol Biol. 1976;28:161–165. doi: 10.1016/s0022-2836(67)80085-8. [DOI] [PubMed] [Google Scholar]
- Noller HF. Ribosomal RNA and translation. Annu Rev Biochem. 1991;60:191–227. doi: 10.1146/annurev.bi.60.070191.001203. [DOI] [PubMed] [Google Scholar]
- Noller HF. Peptidyl transferase: protein, ribonucleoprotein, or RNA. J Bacteriol. 1993;175:5297–5300. doi: 10.1128/jb.175.17.5297-5300.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- O'Connor M, Göringer HU, Dahlberg AE. A ribosomal ambiguity mutation in the 530 loop ofE. coli 16S rRNA. Nucleic Acids Res. 1992;20:4221–4227. doi: 10.1093/nar/20.16.4221. [DOI] [PMC free article] [PubMed] [Google Scholar]
- O'Connor M, Dahlberg AE. Mutations at U2555, a tRNA-protected base in the 23S rRNA, affect translational fidelity. Proc Natl Acad Sci USA. 1993;90:9214–9218. doi: 10.1073/pnas.90.19.9214. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Parker J. Errors and alternatives in reading the universal genetic code. Microbiol Rev. 1989;53:273–298. doi: 10.1128/mr.53.3.273-298.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Parkin NT, Chamorro M, Varmus HE. Human immunodeficiency virus type 1gag-pol frameshifting is dependent on downstream mRNA secondary structure: demonstration by expression in vivo. J Virol. 1992;66:5147–5151. doi: 10.1128/jvi.66.8.5147-5151.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Prescott CD, Dahlberg AE. A single base change at 726 in 16S rRNA radically alters the pattern of proteins synthesized in vivo. EMBO J. 1990;9:289–294. doi: 10.1002/j.1460-2075.1990.tb08107.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Saarma U, Remme J. Novel mutants of 23S rRNA: characterization of functional properties. Nucleic Acids Res. 1992;20:3147–3152. doi: 10.1093/nar/20.12.3147. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sakai H (1989) Suppression einer mitochondrialen Frameshift-Mutation der HefeS. cerevisiae. Thesis, Universität München
- Sakai H, Stiess R, Weiss-Brummer B. Mitochondrial mutations restricting spontaneous translational frameshift suppression in the yeastSaccharomyces cerevisiae. Mol Gen Genet. 1991;227:306–317. doi: 10.1007/BF00259684. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smith JE, Cooperman BS. Methylation sites inEscherichia coli ribosomal RNA: localization and identification of four new sites of methylation in 23S rRNA. Biochemistry. 1993;31:10825–10834. doi: 10.1021/bi00159a025. [DOI] [PubMed] [Google Scholar]
- Sørensen MA, Kurland CG, Petersen S. Codon usage determines translation rate inE. coli. J Mol Biol. 1989;207:365–377. doi: 10.1016/0022-2836(89)90260-x. [DOI] [PubMed] [Google Scholar]
- Sor F, Fukuhara H. Complete DNA sequence coding for the large ribosomal RNA of yeast mitochondria. Nucleic Acid Res. 1982;11:339–348. doi: 10.1093/nar/11.2.339. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Steiner G, Kuechler E, Barta A. Photo-affinity labelling at the peptidyl tranferase centre reveals two different positions for A- and P-sites in domain V of 23S rRNA. EMBO J. 1988;7:3949–3955. doi: 10.1002/j.1460-2075.1988.tb03281.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ten Dam E, Pleij CWA, Bosch L. RNA pseudoknots: translational frameshifting and read-through on viral RNAs. Virus Genes. 1990;4:121–136. doi: 10.1007/BF00678404. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tu C, Tzeng TH, Bruenn J. Ribosomal movement impeded at a pseudoknot required for frameshifting. Proc Natl Acad Sci USA. 1992;89:8636–8640. doi: 10.1073/pnas.89.18.8636. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Varenne S, Knibiehler M, Cavard D, Morlon J, Lazdunski C. Variable rates of polypeptide chain elongation for colicins A, E2 and E3. J Mol Biol. 1982;159:57–70. doi: 10.1016/0022-2836(82)90031-6. [DOI] [PubMed] [Google Scholar]
- Vester B, Garrett RA. The importance of highly conserved nucleotides in the binding region of chloramphenicol at the peptidyltransferase centre ofEscherichia coli 23S ribosomal RNA. EMBO J. 1988;7:3577–3587. doi: 10.1002/j.1460-2075.1988.tb03235.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weiss RB, Huang WM, Dunn DM. A nascent peptide is required for ribosomal bypass of the coding gap in bacteriophage gene 60. Cell. 1990;62:117–126. doi: 10.1016/0092-8674(90)90245-A. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weiss-Brummer B, Hüttenhofer A. The paromomycin resistance mutation (parr 454) in the 15S rRNA gene of the yeastSaccharomyces cerevisiae is involved in ribosomal frameshifting. Mol Gen Genet. 1989;217:362–369. doi: 10.1007/BF02464905. [DOI] [PubMed] [Google Scholar]
- Weiss-Brummer B, Guba R, Haid A, Schweyen RJ. Fine structure ofoxi1, the mitochondrial gene coding for subunit II of yeast cytochromec oxidase. Curr Genet. 1979;1:75–83. doi: 10.1007/BF00413308. [DOI] [PubMed] [Google Scholar]
- Weiss-Brummer B, Hüttenhofer A, Kaudewitz F. Leakiness of termination codons in mitochondrial mutants of the yeastSaccharomyces cerevisiae. Mol Gen Genet. 1984;198:62–68. doi: 10.1007/BF00328702. [DOI] [PubMed] [Google Scholar]
- Wolf K, Dujon B, Slonimski PP. Mitochondrial genetics. V. Multifactoral crosses involving a mutation conferring paromomycin-resistance inSaccharomyces cerevisiae. Mol Gen Genet. 1973;125:53–90. doi: 10.1007/BF00292983. [DOI] [PubMed] [Google Scholar]
- De Zamaroczy M, Bernardi G. The primary structure of the mitochondrial genome ofSaccharomyces cerevisiae – a review. Gene. 1986;47:155–177. doi: 10.1016/0378-1119(86)90060-0. [DOI] [PubMed] [Google Scholar]