Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 2005;6(2):103–111. doi: 10.1007/s10969-005-2664-4

Enhanced Expression and Purification of Membrane Proteins by SUMO Fusion in Escherichia coli

Xun Zuo 1, Shuisen Li 2, John Hall 1, Michael R Mattern 1, Hiep Tran 1, Joshua Shoo 3, Robin Tan 3, Susan R Weiss 4, Tauseef R Butt 1,
PMCID: PMC7088008  PMID: 16211506

Abstract

Severe acute respiratory syndrome coronavirus (SARS-CoV) membrane protein and 5-lipoxygenase-activating protein (FLAP) are among a large number of membrane proteins that are poorly expressed when traditional expression systems and methods are employed. Therefore to efficiently express difficult membrane proteins, molecular biologists will have to develop novel or innovative expression systems. To this end, we have expressed the SARS-CoV M and FLAP proteins in Escherichia coli by utilizing a novel gene fusion expression system that takes advantage of the natural chaperoning properties of the SUMO (small ubiquitin-related modifier) tag. These chaperoning properties facilitate proper protein folding, which enhances the solubility and biological activity of the purified protein. In addition to these advantages, we found that SUMO Protease 1, can cleave the SUMO fusion high specificity to generate native protein. Herein, we demonstrate that the expression of FLAP and SARS-CoV membrane proteins are greatly enhanced by SUMO fusions in E. coli.

Key words: 5-lipoxygenase activating protein (FLAP), membrane protein expression, Nickel affinity purification, SARS-CoV membrane protein, SUMO fusion

Abbreviations

FLAP

5-lipoxygenase-activating protein

FPLC

Fast Performance Liquid Chromatography

IPTG

isopropyl-β-d-thiogalactopyranoside

M protein of SARS-CoV

membrane protein of SARS coronavirus

Ni-NTA

nickel-nitrilotriacetic acid

PMSF

phenylmethylsulfonyl fluoride

SARS

Severe Acute Respiratory Syndrome

SARS-CoV

SARS coronavirus

References

  • 1.Loll P.J. J. Struct. Biol. 2003;142:144–153. doi: 10.1016/S1047-8477(03)00045-5. [DOI] [PubMed] [Google Scholar]
  • 2.Rota P.A., Oberste M.S. Science. 2003;300:1394–1399. doi: 10.1126/science.1085952. [DOI] [PubMed] [Google Scholar]
  • 3.de Haan C.A., Vennema H., Rottier P.J. J. Virol. 2000;74:4967–4978. doi: 10.1128/JVI.74.11.4967-4978.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Mancini J.A., Abramovitz M., Cox M.E., Wong E., Charleson S., Perrier H., Wang Z., Prasit P., Vickers P.J. FEBS Lett. 1993;318:277–281. doi: 10.1016/0014-5793(93)80528-3. [DOI] [PubMed] [Google Scholar]
  • 5.Malakhov M.P., Mattern M.R., Malakhova O.A., Drinker M., Weeks S.D., Butt T.R. J. Struct. Funct. Genomics. 2004;5:75–86. doi: 10.1023/B:JSFG.0000029237.70316.52. [DOI] [PubMed] [Google Scholar]
  • 6.Yang X.A., Dong X.Y., Li Y., Wang Y.D., Chen W.F. Protein Expr. Purif. 2004;33:332–338. doi: 10.1016/j.pep.2003.10.006. [DOI] [PubMed] [Google Scholar]
  • 7.Ogiso H., Ishitani R., Nureki O., Fukai S., Yamanaka M., Kim J.H., Saito K., Sakamoto A., Inoue M., Shirouzu M., Yokoyama S. Cell. 2002;110:775–787. doi: 10.1016/S0092-8674(02)00963-7. [DOI] [PubMed] [Google Scholar]
  • 8.Grisshammer R., Hermans E. FEBS Lett. 2001;493:101–105. doi: 10.1016/S0014-5793(01)02281-5. [DOI] [PubMed] [Google Scholar]
  • 9.Grisshammer R., Tucker J. Protein Expr. Purif. 1997;11:53–60. doi: 10.1006/prep.1997.0766. [DOI] [PubMed] [Google Scholar]
  • 10.Tate C.G., Grisshammer R. Trends Biotechnol. 1996;14:426–430. doi: 10.1016/0167-7799(96)10059-7. [DOI] [PubMed] [Google Scholar]
  • 11.Tucker J., Grisshammer R. Biochem. J. 1996;317:891–899. doi: 10.1042/bj3170891. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Weiss H.M., Grisshammer R. Eur. J. Biochem. 2002;269:82–92. doi: 10.1046/j.0014-2956.2002.02618.x. [DOI] [PubMed] [Google Scholar]
  • 13.Butt T.R., Jonnalagadda S., Monia B.P., Sternberg E.J., Marsh J.A., Stadel J.M., Ecker D.J., Crooke S.T. Proc. Natl. Acad. Sci. USA. 1989;86:2540–2544. doi: 10.1073/pnas.86.8.2540. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Ecker D.J., Stadel J.M., Butt T.R., Marsh J.A., Monia B.P., Powers D.A., Clark P.E., Warren F., Shatzman A., et al. J. Biol. Chem. 1989;264:7715–7719. [PubMed] [Google Scholar]
  • 15.McDonnell D.P., Pike J.W., Drutz D.J., Butt T.R., O’Malley B.W. Mol. Cell Biol. 1989;9:3517–3523. doi: 10.1128/mcb.9.8.3517. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Yeh E.T., Gong L., Kamitani T. Gene. 2000;248:1–14. doi: 10.1016/S0378-1119(00)00139-6. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Structural and Functional Genomics are provided here courtesy of Nature Publishing Group

RESOURCES