Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 2000;16(12):1099–1106. doi: 10.1023/A:1010912012932

Low prevalence of Chlamydia pneumoniae and Mycoplasma pneumoniaeamong patients with symptoms of respiratory tract infections inDutch general practices

A Meijer 1, CF Dagnelie 2, JC De Jong 1, A De Vries 1, TM Bestebroer 1, AM Van Loon 3, AIM Bartelds 4, JM Ossewaarde 1
PMCID: PMC7088016  PMID: 11484797

Abstract

Acute respiratory disease is one of the most common reasons to consult a general practitioner. A substantial part of these diseases cannot be explained by an infection with a virus or a common pathogenic bacterium. To study this diagnostic deficit, the prevalence of Chlamydia pneumoniae and Mycoplasma pneumoniae infections was determined in two groups of patients consulting a general practitioner. DNA of C. pneumoniae and M. pneumoniae was detected by a polymerase chain reaction (PCR) in nose/throat swabs from six (1.1%), and from seven (1.3%) patients, respectively, of 557 patients consulting a general practitioner for complaints suggestive for a virus infection during the 1994/1995 respiratory infections season. Two patients remained C. pneumoniae PCR-positive for at least 4 weeks. All others were negative within 3 weeks. Double infections of C. pneumoniae and influenza virus (3/6), and of M. pneumoniae and respiratory syncytial virus (1/7) or rhinovirus (1/7) were diagnosed. During the 1992/1993 season, attempts to isolate C. pneumoniae in cell culture or to detect C. pneumoniae DNA by PCR using throat swabs were all negative for 80 patients with a sore throat, although serological data suggested a C. pneumoniae infection in 13 (16%) patients. A specimen from another patient of this group was M. pneumoniae PCR-positive and the corresponding serum specimens showed a persistent high antibody titre. In summary, the prevalence of acute C. pneumoniae and M. pneumoniae infections was less than 2% in patients consulting a general practitioner.

Keywords: Antibodies, Chlamydia pneumoniae, Family practice, Mycoplasma pneumoniae, Polymerase chain reaction, Respiratory tract diseases

References

  • 1.Kuo CC, Jackson LA, Campbell LA, Grayston JT. Chlamydia pneumoniae (TWAR) Clin Microbiol Rev. 1995;8:451–461. doi: 10.1128/cmr.8.4.451. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Clyde WA., Jr. Clinical overview of typical Mycoplasma pneumoniae infections. Clin Infect Dis. 1993;17(Suppl1):32–36. [PubMed] [Google Scholar]
  • 3.Foy HM. Infections caused by Mycoplasma pneumoniae and possible carrier state in different populations of patients. Clin Infect Dis. 1993;17(Suppl1):37–46. doi: 10.1093/clinids/17.supplement_1.s37. [DOI] [PubMed] [Google Scholar]
  • 4.Huovinen P, Lahtonen R, Ziegler T, et al. Pharyngitis in adults: The presence and coexistence of viruses and bacterial organisms. Ann Intern Med. 1989;110:612–616. doi: 10.7326/0003-4819-110-8-612. [DOI] [PubMed] [Google Scholar]
  • 5.Thom DH, Grayston JT, Campbell LA, Kuo CC, Diwan VK, Wang SP. Respiratory infection with Chlamydia pneumoniae in middle-aged and older adult outpatients. Eur J Clin Microbiol Infect Dis. 1994;13:785–792. doi: 10.1007/BF02111337. [DOI] [PubMed] [Google Scholar]
  • 6.Dagnelie CF, Touw-Otten FWMM, Kuyvenhoven MM, Rozenberg-Arska M, De Melker RA. Bacterial flora in patients presenting with sore throat in Dutch general practice. Fam Pract. 1993;10:371–377. doi: 10.1093/fampra/10.4.371. [DOI] [PubMed] [Google Scholar]
  • 7.Bartelds AIM, Van der Zee J. The Dutch sentinel practices: Origin, objectives and organization. In: Bartelds AIM, Fracheboud J, Van der Zee J, editors. The Dutch Sentinel Practice Network; Relevance for Public Health Policy. Utrecht, The Netherlands: The Netherlands Institute of Primary Health Care; 1989. pp. 1–15. [Google Scholar]
  • 8.Bartelds AIM. Continuous morbidity registration sentinel stations the Netherlands. The Netherlands: The Netherlands Institute of Primary Health Care (NIVEL), Ministry of Public Health, Welfare and Sport and the Health Care Inspectorate; 1997. pp. 6–11. [Google Scholar]
  • 9.Bestebroer TM, Bartelds AIM, Van Loon AM, et al. Virologische NIVEL/RIVM-surveillance van respiratoire virusinfecties in het seizoen 1994/95 (in Dutch) Bilthoven, The Netherlands: National Institute of Public Health and the Environment; 1995. [Google Scholar]
  • 10.Meijer A, Kwakkel GJ, De Vries A, Schouls LM, Ossewaarde JM. Species identification of Chlamydia isolates by analyzing restriction fragment length polymorphism of the 16S-23S rRNA spacer region. J Clin Microbiol. 1997;35:1179–1183. doi: 10.1128/jcm.35.5.1179-1183.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Ossewaarde JM, Rieffe M, Rozenberg-Arska M, Ossenkoppele PM, Nawrocki RP, Van Loon AM. Development and clinical evaluation of a polymerase chain reaction test for detection of Chlamydia trachomatis. J Clin Microbiol. 1992;30:2122–2128. doi: 10.1128/jcm.30.8.2122-2128.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Ursi JP, Ursi D, Ieven M, Pattyn SR. Utility of an internal control for the polymerase chain reaction: Application to detection of Mycoplasma pneumoniae in clinical specimens. APMIS. 1992;100:635–639. doi: 10.1111/j.1699-0463.1992.tb03978.x. [DOI] [PubMed] [Google Scholar]
  • 13.Ieven M, Ursi D, Van Bever H, Quint W, Niesters HG, Goossens H. Detection of Mycoplasma pneumoniae by two polymerase chain reactions and role of M. pneumoniae in acute respiratory tract infections in pediatric patients. J Infect Dis. 1996;173:1445–1452. doi: 10.1093/infdis/173.6.1445. [DOI] [PubMed] [Google Scholar]
  • 14.Greer CE, Peterson SL, Kiviat NB, Manos MM. PCR amplification from paraffin-embedded tissues: Effects of fixative and fixation time. Am J Clin Pathol. 1991;95:117–124. doi: 10.1093/ajcp/95.2.117. [DOI] [PubMed] [Google Scholar]
  • 15.Cles LD, Stamm WE. Use of HL cells for improved isolation and passage of Chlamydia pneumoniae. J Clin Microbiol. 1990;28:938–940. doi: 10.1128/jcm.28.5.938-940.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Ossewaarde JM, Manten JW, Hooft HJ, Hekker AC. An enzyme immunoassay to detect specific antibodies to protein and lipopolysaccharide antigens of Chlamydia trachomatis. J Immunol Methods. 1989;123:293–298. doi: 10.1016/0022-1759(89)90233-0. [DOI] [PubMed] [Google Scholar]
  • 17.Ossewaarde JM, De Vries A, Van den Hoek JAR, Van Loon AM. Enzyme immunoassay with enhanced specificity for detection of antibodies to Chlamydia trachomatis. J Clin Microbiol. 1994;32:1419–1426. doi: 10.1128/jcm.32.6.1419-1426.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Ladany S, Black CM, Farshy CE, Ossewaarde JM, Barnes RC. Enzyme immunoassay to determine exposure to Chlamydia pneumoniae (strain TWAR) J Clin Microbiol. 1989;27:2778–2783. doi: 10.1128/jcm.27.12.2778-2783.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Ossewaarde JM, De Booij AD. Development of a monoclonal antibody for use as an amboceptor in complement fixation tests. J Virol Methods. 1989;25:13–20. doi: 10.1016/0166-0934(89)90096-7. [DOI] [PubMed] [Google Scholar]
  • 20.Malinverni R, Kuo CC, Campbell LA, Grayston JT. Reactivation of Chlamydia pneumoniae lung infection in mice by cortisone. J Infect Dis. 1995;172:593–594. doi: 10.1093/infdis/172.2.593. [DOI] [PubMed] [Google Scholar]
  • 21.Grayston JT. Infections caused by Chlamydia pneumoniae strain TWAR. Clin Infect Dis. 1992;15:757–763. doi: 10.1093/clind/15.5.757. [DOI] [PubMed] [Google Scholar]
  • 22.Kahane S, Greenberg D, Friedman MG, Haikin H, Dagan R. High prevalence of “Simkania Z,” a novel Chlamydia-like bacterium, in infants with acute bronchiolitis. J Infect Dis. 1998;177:1425–1429. doi: 10.1086/517830. [DOI] [PubMed] [Google Scholar]
  • 23.Groff JM, LaPatra SE, Munn RJ, Anderson ML, Osburn BI. Epitheliocystis infection in cultured white sturgeon (Acipenser transmontanus): Antigenic and ultrastructural similarities of the causative agent to the chlamydiae. J Vet Diagn Invest. 1996;8:172–180. doi: 10.1177/104063879600800206. [DOI] [PubMed] [Google Scholar]
  • 24.Birtles RJ, Rowbotham TJ, Storey C, Marrie TJ, Raoult D. Chlamydia-like obligate parasite of free-living amoebae. Lancet. 1997;349:925–926. doi: 10.1016/s0140-6736(05)62701-8. [DOI] [PubMed] [Google Scholar]
  • 25.Amann R, Springer N, Schönhuber W, et al. Coccoid obligate intracellular parasites of acanthamoebae are distantly related to the genus Chlamydia. Endocyto Cell Res. 1997;12:99–101. [Google Scholar]
  • 26.Meijer A, Ossewaarde JM. Broad range chlamydia pcr detects previously unrecognized Chlamydia sequences: A new genus in the family Chlamydiaceae? In: Stephens RS, Byrne GI, Christiansen G, Clarke IN, Grayston JT, Rank RG, Ridgway GL, Saikku P, Schachter J, Stamm WE. (eds), Proceedings of the Ninth International Symposium on Human Chlamydial Infection, International Chlamydia Symposium, San Francisco, USA, 1998; 523-526.
  • 27.Hammerschlag MR, Chirgwin K, Roblin PM, et al. Persistent infection with Chlamydia pneumoniae following acute respiratory illness. Clin Infect Dis. 1992;14:178–182. doi: 10.1093/clinids/14.1.178. [DOI] [PubMed] [Google Scholar]
  • 28.Gaydos CA, Roblin PM, Hammerschlag MR, et al. Diagnostic utility of PCR-enzyme immunoassay, culture, and serology for detection of Chlamydia pneumoniae in symptomatic and asymptomatic patients. J Clin Microbiol. 1994;32:903–905. doi: 10.1128/jcm.32.4.903-905.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Hyman CL, Roblin PM, Gaydos CA, Quinn TC, Schachter J, Hammerschlag MR. Prevalence of asymptomatic nasopharyngeal carriage of Chlamydia pneumoniae in subjectively healthy adults: Assessment by polymerase chain reaction-enzyme immunoassay and culture. Clin Infect Dis. 1995;20:1174–1178. doi: 10.1093/clinids/20.5.1174. [DOI] [PubMed] [Google Scholar]
  • 30.Kuo CC, Grayston JT. A sensitive cell line, HL cells for isolation and propagation of Chlamydia pneumoniae strain TWAR. J Infect Dis. 1990;162:755–758. doi: 10.1093/infdis/162.3.755. [DOI] [PubMed] [Google Scholar]
  • 31.Roblin PM, Dumornay W, Hammerschlag MR. Use of HEp2 cells for improved isolation and passage of Chlamydia pneumoniae. J Clin Microbiol. 1992;30:1968–1971. doi: 10.1128/jcm.30.8.1968-1971.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.Herbrink P, Zuyderwijk-Zwinkels M, Niesters B, et al. Comparison of different media for isolation of Chlamydia trachomatis by cell culture on HeLa cells. Eur J Clin Microbiol Infect Dis. 1991;10:656–659. doi: 10.1007/BF01975820. [DOI] [PubMed] [Google Scholar]
  • 33.Brade L, Brunnemann H, Ernst M, et al. Occurrence of antibodies against chlamydial lipopolysaccharide in human sera as measured by ELISA using an artificial glycoconjugate antigen. FEMS Immunol Med Microbiol. 1994;8:27–41. doi: 10.1111/j.1574-695X.1994.tb00422.x. [DOI] [PubMed] [Google Scholar]
  • 34.Ossewaarde JM, Van Steenbergen JE, Van der Meijden-Kuypers HL, Gorissen WHM. Seroepidemiology of Chlamydia pneumoniae infections in the city of Utrecht, The Netherlands. Atherosclerosis. 1995;115(Suppl):S122. [Google Scholar]
  • 35.Ossewaarde JM, Feskens EJM, de Vries A, Vallinga CE, Kromhout D. Chlamydia pneumoniae is a risk factor for coronary heart disease in symptom free elderly men, but Helicobacter pylori and cytomegalovirus are not. Epidemiol Infect. 1998;120:93–99. doi: 10.1017/s0950268897008303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Jacobs E. Serological diagnosis of Mycoplasma pneumoniae infections: A critical review of current procedures. Clin Infect Dis. 1993;17(Suppl1):79–82. doi: 10.1093/clinids/17.supplement_1.s79. [DOI] [PubMed] [Google Scholar]

Articles from European Journal of Epidemiology are provided here courtesy of Nature Publishing Group

RESOURCES