Abstract
To investigate maturational changes of membranefood protein binding capacity, we studied bindingcharacteristics of brush border membranes isolated fromsmall intestines of newborn and adult rats. Binding of biotinylated gliadin peptides, cow's milkproteins (α-casein, β-lactoglobulin,α-lactalbumin, bovine serum albumin) and lectinswas assessed by a sensitive chemiluminescence blotassay. We found specific food protein binding with regardto saturation and inhibition. Maximal binding of mostfood proteins and several lectins to brush bordermembranes of newborn and adult rats was comparable, whereas binding of β-lactoglobulin wassubstantially less. Common or adjoining binding sitesfor the different food proteins tested were indicated bycorresponding membrane protein binding patterns and by inhibition properties of unrelated proteins.Compared to newborns, adult membrane vesicles as well asisolated membrane proteins showed higher bindingcapacities. Thus postnatal maturation of smallintestinal brush border membranes correlated withincreased food protein binding capacity.
Keywords: BRUSH BORDER MEMBRANE, SMALL INTESTINE, MATURATION, FOOD PROTEINS, LECTINS
REFERENCES
- 1.Hoyne GF, Callow MG, Kuo MC, Thomas WR. Presentation of peptides and proteins by intestinal epithelial cells. Immunology. 1993;80:204–208. [PMC free article] [PubMed] [Google Scholar]
 - 2.Kaiserlian D, Vidal K, Revillard JP. Murine enterocytes can present soluble antigen to specific class II-restricted CD4+ T cells. Eur J Immunol. 1989;19:1513–1516. doi: 10.1002/eji.1830190827. [DOI] [PubMed] [Google Scholar]
 - 3.Said HM, Ong DE, Shingleton JL. Intestinal uptake of retinol: Enhancement by bovine milk β-lactoglobulin. Am J Clin Nutr. 1989;49:690–694. doi: 10.1093/ajcn/49.4.690. [DOI] [PubMed] [Google Scholar]
 - 4.Gonnella PA, Neutra MR. Membrane-bound and fluid-phase macromolecules enter separate prelysosomal compartments in absorptive cells of suckling rat ileum. J Cell Biol. 1984;99:909–917. doi: 10.1083/jcb.99.3.909. [DOI] [PMC free article] [PubMed] [Google Scholar]
 - 5.Abrahamson DR, Rodewald R. Evidence for the sorting of endocytic vesicle contents during the receptor-mediated transport of IgG across the newborn rat intestine. J Cell Biol. 1981;91:270–280. doi: 10.1083/jcb.91.1.270. [DOI] [PMC free article] [PubMed] [Google Scholar]
 - 6.Wang X, Andersson R. Intestinal brush border membrane function. Scand J Gastroenterol. 1994;29:289–299. doi: 10.3109/00365529409094838. [DOI] [PubMed] [Google Scholar]
 - 7.Lorenzsonn V, Olsen WA. In vivoresponses of rat intestinal epithelium to intraluminal dietary lectins. Gastroenterology. 1982;82:838–848. [PubMed] [Google Scholar]
 - 8.Torres-Pinedo R, Mahmood A. Postnatal changes in biosynthesis of microvillus membrane glycans of rat small intestine: I. Evidence of a developmental shift of terminal sialylation to fucosylation. Biochem Biophys Res Commun. 1984;125:546–553. doi: 10.1016/0006-291x(84)90574-6. [DOI] [PubMed] [Google Scholar]
 - 9.Tsuboi KK, Kwong LK, Sunshine P, Castillo RO. Mechanism of maturational decline of rat intestinal lactase-phlorizin hydrolase. Biochem J. 1992;282:107–113. doi: 10.1042/bj2820107. [DOI] [PMC free article] [PubMed] [Google Scholar]
 - 10.Proulx P. Structure-function relationships in intestinal brush border membrane s. Biochim Biophys Acta. 1991;1071:255–271. doi: 10.1016/0304-4157(91)90016-p. [DOI] [PubMed] [Google Scholar]
 - 11.Ekstroem GM, We stroem BR, Te lemo E, Karlsson BW. The uptake of fluoresce in-conjugated dextran 70,000 by the small intestinal epithelium of the young rat and pig in relation to macromole cular transmission into blood. J De v Physiol. 1988;10:227–233. [PubMed] [Google Scholar]
 - 12.Isolauri E, Majamaa H, Arvola T, Rantala I, Virtanen E, Arvilommi H. Lactobacillu s caseistrain GG reverses increase d intestinal perme ability induced by cow milk in suckling rats. Gastroenterology. 1993;105:1643–1650. doi: 10.1016/0016-5085(93)91059-q. [DOI] [PubMed] [Google Scholar]
 - 13.Stern M, Pang KY, Walker WA. Food proteins and gut mucosal barrie r. II. Differential interaction of cow's milk proteins with the mucous coat and the surface membrane of adult and immature rat jejunum. Pediatr Res. 1984;18:1252–1257. doi: 10.1203/00006450-198412000-00005. [DOI] [PubMed] [Google Scholar]
 - 14.Stern M, Ge llermann B, Wieser H. Food proteins and maturation of small intestinal microvillus membrane s (MVM. III. Food protein binding and MVM proteins in rats from newborn to young adult age. J Pediatr Gastroente rol Nutr. 1990;11:389–394. doi: 10.1097/00005176-199010000-00019. [DOI] [PubMed] [Google Scholar]
 - 15.Bolte G, Osman A, Mothes T, Stern M. Peptic-tryptic digests of gliadin: Contaminating trypsin but not pepsin interfere s with gastrointestinal binding characteristics. Clin Chim Acta. 1996;247:59–70. doi: 10.1016/0009-8981(95)06220-3. [DOI] [PubMed] [Google Scholar]
 - 16.Stern M, Gellermann B. Food proteins and maturation of small intestinal microvillus membrane s (MVM). I. Binding characteristics of cow's milk proteins and concanavalin A to MVM from newborn and adult rats. J Pediatr Gastroente rol Nutr. 1988;7:115–121. doi: 10.1097/00005176-198801000-00021. [DOI] [PubMed] [Google Scholar]
 - 17.Dahlqvist A. Assay of intestinal disaccharidase s. Scand J Clin Lab Invest. 1984;44:169–172. doi: 10.3109/00365518409161400. [DOI] [PubMed] [Google Scholar]
 - 18.Bowers GN, McComb RB. A continuous spectrophotometric me thod for me asuring the activity of serum alkaline phosphatase. Clin Chem. 1966;12:70–89. [PubMed] [Google Scholar]
 - 19.Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein me asurement with the Folin phenol reagent. J Biol Chem. 1951;193:265–275. [PubMed] [Google Scholar]
 - 20.Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227:680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
 - 21.Towbin H, Staehelin T, Gordon J. Electrophore tic transfer of proteins from polyacrylamide ge ls to nitrocellulose sheets: Procedure and some applications. Proc Natl Acad Sci USA. 1979;76:4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
 - 22.Hawkes R, Niday E, Gordon J. A dot-immunobinding assay for monoclonal and other antibodies. Anal Biochem. 1982;119:142–147. doi: 10.1016/0003-2697(82)90677-7. [DOI] [PubMed] [Google Scholar]
 - 23.Pittschiele r K, Ladinser B, Pe te ll JK. Reactivity of gliadin and lectins with celiac intestinal mucosa. Pediatr Res. 1994;36:635–641. doi: 10.1203/00006450-199411000-00018. [DOI] [PubMed] [Google Scholar]
 - 24.Taatjes DJ, Roth J. Selective loss of sialic acid from rat small intestinal epithelial cells during postnatal development: Demonstration with lectin-gold techniques. Eur J Cell Biol. 1990;53:255–266. [PubMed] [Google Scholar]
 - 25.Colyer J, Kumar PJ, Waldron NM, Clark ML, Farthing MJG. Gliadin binding to rat and human enterocyte s. Clin Sci. 1987;72:593–598. doi: 10.1042/cs0720593. [DOI] [PubMed] [Google Scholar]
 - 26.Bloch KJ, Wright JA, Bishara SM, Bloch MB. Uptake of polypeptide fragments by rat intestine in vitroand in vivo. Gastroenterology. 1988;95:1272–1278. doi: 10.1016/0016-5085(88)90361-7. [DOI] [PubMed] [Google Scholar]
 - 27.Babbar HS, Jaswal VMS, Mahmood A. Effect of surface desialylation on intestinal uptake of proteins in suckling rats. Indian J Exp Biol. 1988;26:31–33. [PubMed] [Google Scholar]
 - 28.Biber J, Murer H. Methodological guide for studying epithelial transport with isolated membrane vesicles. In: Yudilevich DL, Déves R, Perán S, Cabantchik ZI, editors. Cell Membrane Transport. Expe rimental Approaches and Methodologies. New York: Plenum Press; 1991. pp. 163–186. [Google Scholar]
 - 29.Mahmood A, Torre s-Pinedo R. Postnatal changes in lectin binding to microvillus membrane s from rat intestine. Biochem Biophys Res Commun. 1983;113:400–406. doi: 10.1016/0006-291x(83)91740-0. [DOI] [PubMed] [Google Scholar]
 - 30.Pang KY, Bresson JL, Walker WA. Development of gastrointestinal surface. VIII. Lectin identification of carbohydrate differences. Am J Physiol. 1987;252:G685–G691. doi: 10.1152/ajpgi.1987.252.5.G685. [DOI] [PubMed] [Google Scholar]
 - 31.Boldt DH, Banwell JG. Binding of isolectins from red kidney bean (Phaseolus vulgaris) to purifi ed rat brush-border membrane s. Biochim Biophys Acta. 1985;843:230–237. doi: 10.1016/0304-4165(85)90143-6. [DOI] [PubMed] [Google Scholar]
 - 32.Stern M, Gellermann B, Schall I. Neonatal and adult patterns of lectin binding to rat small intestinal microvillus membrane s. Biol Neonate. 1990;58:112–119. doi: 10.1159/000243241. [DOI] [PubMed] [Google Scholar]
 - 33.Stern M, Knauss M, Stallmach A. Crypt-villus differentiation refle cted by lectin and protein binding to rat small intestinal brush border membrane s. Dig Dis Sci. 1995;40:2438–2445. doi: 10.1007/BF02063251. [DOI] [PubMed] [Google Scholar]
 - 34.Farré Castany MA, Kocna P, Tlaskalová-Hogenová H. Binding of gliadin to lymphoblastoid, myeloid and epithelial cell lines. Folia Microbiol. 1995;40:431–435. doi: 10.1007/BF02814752. [DOI] [PubMed] [Google Scholar]
 - 35.Osman AA, Braune rsreuther I, Mothes T. Investigation of gliadin binding to different selected proteins using a biotin-streptavidin system. Z Lebensm Unte rs Forsch. 1994;198:249–252. doi: 10.1007/BF01192604. [DOI] [PubMed] [Google Scholar]
 - 36.Lenoir D, Ruggiero-Lopez D, Louisot P, Biol M-C. Developme ntal change s in inte st inal glycosylation: Nutritiondependent multi-factor regulation of the fucosylation pathway at weaning time. Biochim Biophys Acta. 1995;1234:29–36. doi: 10.1016/0005-2736(94)00254-m. [DOI] [PubMed] [Google Scholar]
 - 37.Fernandez-Pol JA. Immunoautoradiographic detection of epidermal growth factor receptors after e lectrophore tic transfer from gels to diazo-pape r. FEBS Lett. 1982;143:86–92. doi: 10.1016/0014-5793(82)80279-2. [DOI] [PubMed] [Google Scholar]
 - 38.Mazurier J, Montreuil J, Spik G. Visualization of lactotransferrin brush-border re ceptors by ligand-blotting. Biochim Biophys Acta. 1985;821:453–460. doi: 10.1016/0005-2736(85)90050-1. [DOI] [PubMed] [Google Scholar]
 - 39.Yeager CL, Ashmun RA, Williams RK, Cardellichio CB, Shapiro LH, Look AT, Holmes KV. Human aminopeptidase N is a receptor for human coronavirus 229E. Nature. 1992;357:420–422. doi: 10.1038/357420a0. [DOI] [PMC free article] [PubMed] [Google Scholar]
 - 40.Ruehlmann J, Sinha P, Hanse n G, Tauber R, Koe ttgen E. Studies on the aetiology of coeliac disease: No evidence for lectin-like components in wheat gluten. Biochim Biophys Acta. 1993;1181:249–256. doi: 10.1016/0925-4439(93)90028-y. [DOI] [PubMed] [Google Scholar]
 - 41.Sande rson IR, Walker WA. Uptake and transport of macromolecule s by the intestine: Possible role in clinical disorders. Gastroenterology. 1993;104:622–639. doi: 10.1016/0016-5085(93)90436-g. [DOI] [PubMed] [Google Scholar]
 - 42.Marcon-Ge nty D, Tomé D, Dumontier AM, Kheroua O, Desjeux JF. Permeability of milk protein across the intestinal epithelium in vitro. Reprod Nutr De v. 1989;29:717–723. doi: 10.1051/rnd:19890610. [DOI] [PubMed] [Google Scholar]
 - 43.Neutra MR, Phillips TL, Mayer EL, Fishkind DJ. Transport of membrane-bound macromolecules by M cells in follicleassociated epithelium of rabbit Peyer's patch. Cell Tissue Res. 1987;247:537–546. doi: 10.1007/BF00215747. [DOI] [PubMed] [Google Scholar]
 - 44.Steinman RM, Mellman IS, Muller WA, Cohn ZA. Endocytosis and the recycling of plasma membrane. J Cell Biol. 1983;96:1–27. doi: 10.1083/jcb.96.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
 - 45.Blok J, Mulder-Stapel AA, Ginsel LA, Daems WT. Endocytosis in absorptive cells of cultured human small-intestinal tissue: Horseradish peroxidase, lactoperoxidase, and ferritin as markers. Cell Tissue Res. 1981;216:1–13. doi: 10.1007/BF00234540. [DOI] [PubMed] [Google Scholar]
 
