Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 2008 Jun 7;168(1):81. doi: 10.1007/s10479-008-0369-3

A CA-based epidemic model for HIV/AIDS transmission with heterogeneity

Huiyu Xuan 1, Lida Xu 2,3, Lu Li 1,
PMCID: PMC7088085  PMID: 32214586

Abstract

The complex dynamics of HIV transmission and subsequent progression to AIDS make the mathematical analysis untraceable and problematic. In this paper, we develop an extended CA simulation model to study the dynamical behaviors of HIV/AIDS transmission. The model incorporates heterogeneity into agents’ behaviors. Agents have various attributes such as infectivity and susceptibility, varying degrees of influence on their neighbors and different mobilities. Additional, we divide the post-infection process of AIDS disease into several sub-stages in order to facilitate the study of the dynamics in different development stages of epidemics. These features make the dynamics more complicated. We find that the epidemic in our model can generally end up in one of the two states: extinction and persistence, which is consistent with other researchers’ work. Higher population density, higher mobility, higher number of infection source, and greater neighborhood are more likely to result in high levels of infections and in persistence. Finally, we show in four-class agent scenario, variation in susceptibility (or infectivity) and various fractions of four classes also complicates the dynamics, and some of the results are contradictory and needed for further research.

Keywords: HIV/AIDS transmission, Epidemic dynamics, Heterogeneity, Cellular automata

References

  1. Ahmed E., Agiza H. N. On modeling epidemics. Including latency, incubation and variable susceptibility. Physica A. 1998;253:347–352. doi: 10.1016/S0378-4371(97)00665-1. [DOI] [Google Scholar]
  2. Anderson R. M. The epidemiology of HIV infection: variable incubation plus infectious periods and heterogeneity in sexual activity. Journal of the Royal Statistical Society. Series A. Statistics in Society. 1988;151:66–98. [Google Scholar]
  3. Anderson R. M., May R. M. Infectious diseases of humans: dynamics and control. London: Oxford University Press; 1991. [Google Scholar]
  4. Anderson R. M., May R. M., McLean A. R. Possible demographic consequences of AIDS in developing countries. Nature. 1988;332:228–234. doi: 10.1038/332228a0. [DOI] [PubMed] [Google Scholar]
  5. Anderson R. M., Medley G. Epidemiology of HIV infection and AIDS: incubation and infectious periods, survival and vertical transmission. AIDS. 1988;2:S57–63. doi: 10.1097/00002030-198800001-00009. [DOI] [PubMed] [Google Scholar]
  6. Atkinson J. A simulation model of the dynamics of HIV transmission in intravenous drug users. Computers and Biomedical Research. 1996;29:338–349. doi: 10.1006/cbmr.1996.0025. [DOI] [PubMed] [Google Scholar]
  7. Bagni, R., Berchi, R., & Cariello, P. (2002). A comparison of simulation models applied to epidemics. Journal of Artificial Societies and Social Simulation 5.
  8. Bailey N. T. J. The mathematical theory of infectious diseases and its applications. New York: Oxford University Press; 1975. [Google Scholar]
  9. Benyoussef A., HafidAllah N. E., ElKenz A., et al. Dynamics of HIV infection on 2D cellular automata. Physica A. 2003;322:506–520. doi: 10.1016/S0378-4371(02)01915-5. [DOI] [Google Scholar]
  10. Brauer F., Driessche P. V. D. Models for transmission of disease with immigration of infectives. Mathematical Biosciences. 2001;171:143–154. doi: 10.1016/S0025-5564(01)00057-8. [DOI] [PubMed] [Google Scholar]
  11. Chang H.-G. H., Morse D. L., Noonan C., et al. Survival and mortality patterns of an acquired immunodeficiency syndrome (AIDS) cohort in New York State. American Journal of Epidemiology. 1993;138:341–349. doi: 10.1093/oxfordjournals.aje.a116864. [DOI] [PubMed] [Google Scholar]
  12. Frauenthal J. C. Mathematical modeling in epidemiology. New York: Springer; 1980. [Google Scholar]
  13. Fuentes M. A., Kuperman M. N. Cellular automata and epidemiological models with spatial dependence. Physica A. 1999;267:471–486. doi: 10.1016/S0378-4371(99)00027-8. [DOI] [Google Scholar]
  14. Gao B.-J., Xuan H.-Y., Zhang T., et al. A heterogeneous cellular automata model for SARS transmission. Systems Engineering Theory Methodology Applications. 2006;15:205–209. [Google Scholar]
  15. Gerhard M., Schuster H. A cellular automaton describing the formation of spatially ordered structures in chemical systems. Physica D. 1989;36:209–221. doi: 10.1016/0167-2789(89)90081-X. [DOI] [Google Scholar]
  16. Gerhardt M., Schuster H., Tyson J. J. A cellular automaton model of excitable media. Physica D. 1990;46:392–415. doi: 10.1016/0167-2789(90)90101-T. [DOI] [PubMed] [Google Scholar]
  17. Gordan T. J. A simple agent model of an epidemic. Technological Forecasting and Social Change. 2003;70:397–417. doi: 10.1016/S0040-1625(02)00323-2. [DOI] [Google Scholar]
  18. Griffiths J., Lowrie D., Williams J. An age-structured model for the AIDS epidemic. European Journal of Operational Research. 2000;124:1–14. doi: 10.1016/S0377-2217(99)00288-X. [DOI] [Google Scholar]
  19. Hyman J. M., Li J., Stanley E. A. The differential infectivity and staged progression models for the transmission of HIV. Mathematical Biosciences. 1999;155:77–109. doi: 10.1016/S0025-5564(98)10057-3. [DOI] [PubMed] [Google Scholar]
  20. Karafyllidis I. A model for the influence of the greenhouse effect on insect and microorganism geographical distribution and population dynamics. Biosystems. 1998;45:1–10. doi: 10.1016/S0303-2647(97)00061-0. [DOI] [PubMed] [Google Scholar]
  21. Karafyllidis I., Thanailakis A. A model for predicting forest fire using cellular automata. Ecological Modelling. 1997;99:87–97. doi: 10.1016/S0304-3800(96)01942-4. [DOI] [Google Scholar]
  22. Kermack W. O., McKendrick A. G. A contribution to the mathematical theory of epidemics. Proceedings of the Royal Society of London. Series A. 1927;115:700–721. doi: 10.1098/rspa.1927.0118. [DOI] [Google Scholar]
  23. Leslie W. D., Brunham R. C. The dynamics of HIV spread: a computer simulation model. Computers and Biomedical Research. 1990;23:380–401. doi: 10.1016/0010-4809(90)90028-B. [DOI] [PubMed] [Google Scholar]
  24. Luo J., Xu L., Jamont J.-P., et al. Flood decision support system on agent grid: method and implementation. Enterprise Information Systems. 2007;1:49–68. doi: 10.1080/17517570601092184. [DOI] [Google Scholar]
  25. Martin O., Odlyzko A. M., Wolfram S. Algebraic properties of cellular automata. Communications in Mathematical Physics. 1984;93:219–258. doi: 10.1007/BF01223745. [DOI] [Google Scholar]
  26. May R. M., Anderson R. M. Transmission dynamics of HIV infection. Nature. 1987;326:137–142. doi: 10.1038/326137a0. [DOI] [PubMed] [Google Scholar]
  27. May R. M., Anderson R. M., Irwin M. E. The transmission dynamics of human immunodeficiency virus (HIV) [and discussion] Philosophical Transactions of the Royal Society of London. Series B, Biological Science. 1988;321:565–607. doi: 10.1098/rstb.1988.0108. [DOI] [PubMed] [Google Scholar]
  28. Medley G. F., Anderson R. M., Cox D. R., et al. Incubation period of AIDS in patients infected via blood transfusion. Nature. 1987;328:719–721. doi: 10.1038/328719a0. [DOI] [PubMed] [Google Scholar]
  29. Medley G. F., Billard L., Cox D. R., et al. The distribution of the incubation period for the acquired immunodeficiency syndrome (AIDS) Proceedings of the Royal Society of London. Series B. Biological Sciences. 1988;233:367–377. doi: 10.1098/rspb.1988.0026. [DOI] [PubMed] [Google Scholar]
  30. Murray J. D. Mathematical biology I. Berlin: Springer; 2005. [Google Scholar]
  31. North M. J., Collier N. T., Vos J. R. Experiences creating three implementations of the repast agent modeling toolkit. ACM Transactions on Modeling and Computer Simulation. 2006;16:1–25. doi: 10.1145/1122012.1122013. [DOI] [Google Scholar]
  32. Rhodes C. J., Anderson R. M. Persistence and dynamics in lattice models of epidemic spread. Journal of Theoretical Biology. 1996;180:125–133. doi: 10.1006/jtbi.1996.0088. [DOI] [PubMed] [Google Scholar]
  33. Rhodes C. J., Anderson R. M. Epidemic thresholds and vaccination in a lattice model of disease spread. Theoretical Population Biology. 1997;52:101–118. doi: 10.1006/tpbi.1997.1323. [DOI] [PubMed] [Google Scholar]
  34. Rothenberg R., Woelfel M., Stoneburner R., et al. Survival with the acquired immunodeficiency syndrome. Experience with 5833 cases in New York City. New England Journal of Medicine. 1987;317:1297–1302. doi: 10.1056/NEJM198711193172101. [DOI] [PubMed] [Google Scholar]
  35. Tarwater P. M., Martin C. F. Effects of population density on the spread of disease. Complexity. 2001;6:29–36. doi: 10.1002/cplx.10003. [DOI] [Google Scholar]
  36. Weimar J. R., Tyson J. J., Watson L. T. Diffusion and wave propagation in cellular automaton models of excitable media. Physica D. 1992;55:309–327. doi: 10.1016/0167-2789(92)90062-R. [DOI] [Google Scholar]
  37. Wu H., Tan W.-Y. Modelling the HIV epidemic: a state-space approach. Mathematical and Computer Modelling. 2000;32:197–215. doi: 10.1016/S0895-7177(99)00232-0. [DOI] [Google Scholar]
  38. Zhang Y., Bhattacharyya S. Effectiveness of Q-learning as a tool for calibrating agent-based supply network models. Enterprise Information Systems. 2007;1:217–233. doi: 10.1080/17517570701275390. [DOI] [Google Scholar]

Articles from Annals of Operations Research are provided here courtesy of Nature Publishing Group

RESOURCES