Summary.
Evolutionary conservation derived from a multiple sequence alignment is a powerful indicator of the functional significance of a residue, and it can help to predict active sites, ligand-binding sites, and protein interaction interfaces. The results of the existing algorithms in identifying the residue’s conservation strongly depend on the sequence alignment, making the results highly variable. Here, by introducing the amino acid similarity matrix, we propose a novel gap-treating approach by combining the evolutionary information and von Neumann entropies to compute the residue conservation scores. It is indicated through a series of tested results that the new approach is quite encouraging and promising and may become a useful tool in complementing the existing methods.
Keywords: Keywords: Evolutionary conservation – Amino acid similarity matrix – von Neumann entropy – Functional residue – Sensitivity – Specificity
Footnotes
Authors’ address: Shao-Wu Zhang, College of Automation, Northwestern Polytechnical University, Xi’an, 710072, China
References
- Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997;25:3389–3402. doi: 10.1093/nar/25.17.3389. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Armon A, Graur D, Ben-Tal N. ConSurf: an algorithmic tool for the identification of functional regions in proteins by surface mapping of phylogenetic information. J Mol Biol. 2001;307:447–463. doi: 10.1006/jmbi.2000.4474. [DOI] [PubMed] [Google Scholar]
- Brocchieri L, Zhou GP, Jardetzky O. Allostery and induced fit: NMR and molecular modeling study of the trp repressor-mtr DNA complex. In: Eaton GR, Wiley DC, Jardetzky O, editors. ACS Symposium Series 827: Structures and Mechanisms from Ashes to Enzymes. Washington, DC: American Chemistry Society; 2002. pp. 340–366. [Google Scholar]
- Chou KC. Insights from modelling the 3D structure of the extracellular domain of alpha7 nicotinic acetylcholine receptor. Biochem Biophys Res Commun. 2004a;319:433–438. doi: 10.1016/j.bbrc.2004.05.016. [DOI] [PubMed] [Google Scholar]
- Chou KC. Insights from modelling the tertiary structure of BACE2. J Proteome Res. 2004b;3:1069–1072. doi: 10.1021/pr049905s. [DOI] [PubMed] [Google Scholar]
- Chou KC. Modelling extracellular domains of GABA-A receptors: subtypes 1, 2, 3, 5. Biochem Biophys Res Commun. 2004c;316:636–642. doi: 10.1016/j.bbrc.2004.02.098. [DOI] [PubMed] [Google Scholar]
- Chou KC. Molecular therapeutic target for type-2 diabetes. J Proteome Res. 2004d;3:1284–1288. doi: 10.1021/pr049849v. [DOI] [PubMed] [Google Scholar]
- Chou KC. Review: structural bioinformatics and its impact to biomedical science. Curr Med Chem. 2004e;11:2105–2134. doi: 10.2174/0929867043364667. [DOI] [PubMed] [Google Scholar]
- Chou KC, Tomasselli AG, Heinrikson RL. Prediction of the tertiary structure of a caspase-9/inhibitor complex. FEBS Lett. 2000;470:249–256. doi: 10.1016/S0014-5793(00)01333-8. [DOI] [PubMed] [Google Scholar]
- Chou KC, Watenpaugh KD, Heinrikson RL. A model of the complex between cyclin-dependent kinase 5(Cdk5) and the activation domain of neuronal Cdk5 activator. Biochem Biophys Res Commun. 1999;259:420–428. doi: 10.1006/bbrc.1999.0792. [DOI] [PubMed] [Google Scholar]
- Chou KC, Wei DQ, Zhong WZ. Binding mechanism of coronavirus main proteinase with ligands and its implication to drug design against SARS. (Erratum: ibid, 2003, Vol. 310, 675) Biochem Biophys Res Commun. 2003;308:148–151. doi: 10.1016/S0006-291X(03)01342-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chou KC, Wei DQ, Du QS, Sirois S, Zhong WZ. Review: progress in computational approach to drug development against SARS. Curr Med Chem. 2006;13:3263–3270. doi: 10.2174/092986706778773077. [DOI] [PubMed] [Google Scholar]
- Clercq ED. Potential antivirals and antiviral strategies against SARS coronavirus infections. Expert Rev Anti Infect Ther. 2006;4:291–302. doi: 10.1586/14787210.4.2.291. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Du QS, Wang SQ, Jiang ZQ, Gao WN, Li YD, Wei DQ, Chou KC. Application of bioinformatics in search for cleavable peptides of SARS-CoV Mpro and chemical modification of octapeptides. Med Chem. 2005b;1:209–213. doi: 10.2174/1573406053765468. [DOI] [PubMed] [Google Scholar]
- Du QS, Wang SQ, Wei DQ, Zhu Y, Guo H, Sirois S, Chou KC. Polyprotein cleavage mechanism of SARS CoV Mpro and chemical modification of octapeptide. Peptides. 2004;25:1857–1864. doi: 10.1016/j.peptides.2004.06.018. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Du QS, Wang S, Wei DQ, Sirois S, Chou KC. Molecular modelling and chemical modification for finding peptide inhibitor against SARS CoV Mpro. Anal Biochem. 2005a;337:262–270. doi: 10.1016/j.ab.2004.10.003. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fan K, Ma L, Han X, Liang H, Wei P, Liu Y, Lai L. The substrate specificity of SARS coronavirus 3C-like proteinase. Biochem Biophys Res Commun. 2005;329:934–940. doi: 10.1016/j.bbrc.2005.02.061. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gan YR, Huang H, Huang YD, Rao CM, Zhao Y, Liu JS, Wu L, Wei DQ. Synthesis and activity assess of an octapeptide inhibitor designed for SARS coronavirus main proteinase. Peptides. 2006;27:622–625. doi: 10.1016/j.peptides.2005.09.006. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Glaser F, Pupko T, Paz I, Bell RE, Bechor-Shental D, Martz E, Ben-Tal N. ConSurf: identification of functional regions in proteins by surface-mapping of phylogenetic information. Bioinformatics. 2003;19:163–164. doi: 10.1093/bioinformatics/19.1.163. [DOI] [PubMed] [Google Scholar]
- Holmquist R, Goodman M, Conroy T, Czelusniak J. The spatial distribution of fixed mutations within genes coding for proteins. J Mol Evol. 1983;19:437–448. doi: 10.1007/BF02102319. [DOI] [PubMed] [Google Scholar]
- Hu LD, Zheng GY, Jlang HS, Xai Y, Zhang Y, Kong XY. Mutation analysis of 20 SARS virus genome sequences: evidence for negative selection in replicase ORF1b and spike gene. Acta Pharmacol Sinica. 2003;24:741–745. [PubMed] [Google Scholar]
- Hubbard SR. Crystal structure of the activated insulin receptor tyrosine kinase in complex with peptide substrate and ATP analog. Embo J. 1997;16:5572–5581. doi: 10.1093/emboj/16.18.5572. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kang TB, Liang NC. Studies on the inhibitory effects of quercetin on the growth of HL-60 leukemia cells. Biochem Pharmacol. 1997;54:1013–1018. doi: 10.1016/S0006-2952(97)00260-8. [DOI] [PubMed] [Google Scholar]
- Kesel AJ. Synthesis of novel test compounds for antiviral chemotherapy of severe acute respiratory syndrome (SARS) Curr Med Chem. 2005;12:2095–2162. doi: 10.2174/0929867054637644. [DOI] [PubMed] [Google Scholar]
- Liang GZ, Li SZ. A new sequence representation (FASGAI) as applied in better specificity elucidation for human immunodeficiency virus type 1 protease. Biopolymers. 2007;88:401–412. doi: 10.1002/bip.20669. [DOI] [PubMed] [Google Scholar]
- Lichtarge O, Sowa ME. Evolutionary predictions of binding surfaces and interactions. Curr Opin Struct Biol. 2002;12:21–27. doi: 10.1016/S0959-440X(02)00284-1. [DOI] [PubMed] [Google Scholar]
- Lubec G, Afjehi-Sadat L, Yang JW, John JP. Searching for hypothetical proteins: theory and practice based upon original data and literature. Prog Neurobiol. 2005;77:90–127. doi: 10.1016/j.pneurobio.2005.10.001. [DOI] [PubMed] [Google Scholar]
- Mihalek I, Res I, Lichtarge O. A family of evolution-entropy hybrid methods for ranking protein residues by importance. J Mol Biol. 2004;336:1265–1282. doi: 10.1016/j.jmb.2003.12.078. [DOI] [PubMed] [Google Scholar]
- Mihalek I, Res I, Lichtarge O. Evolutionary trace report_maker: a new type of service for comparative analysis of proteins. Bioinformatics. 2006a;22:1656–1657. doi: 10.1093/bioinformatics/btl157. [DOI] [PubMed] [Google Scholar]
- Mihalek I, Res I, Lichtarge O. A structure and evolution-guided Monte Carlo sequence selection strategy for multiple alignment-based analysis of proteins. Bioinformatics. 2006b;22:149–156. doi: 10.1093/bioinformatics/bti791. [DOI] [PubMed] [Google Scholar]
- Ran RQ, Zhou GP, Lu AG, Zhang L, Tang Y, Zhu HY, Rigby AC, Sharp FR. Hsp70 mutant proteins modulate additional apoptotic pathways and improve cell survival. Cell Stress Chaperones. 2004;9:229–242. doi: 10.1379/CSC-19R.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schnell JR, Zhou GP, Zweckstetter M, Rigby AC, James J, Chou JJ. Rapid and accurate structure determination of coiled-coil domains using NMR dipolar couplings:application to cGMP-dependent protein kinase Iα. Protein Sci. 2005;14:142421–142428. doi: 10.1110/ps.051528905. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thompson JD, Higgins DG, Gibson TJ. CLUSTALW: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994;22:4673–4680. doi: 10.1093/nar/22.22.4673. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Troy FA, Cho J-W, Ye J (1993) Polysialic acid: from microbes to man. In: Roth J, Rutishauser U, Troy F (eds) A. Birkhauser, Basel, pp 93–111
- Wang JF, Wei DQ, Li L, Zheng SY, Li YX, Chou KC. 3D structure modeling of cytochrome P450 2C19 and its implication for personalized drug design. Biochem Biophys Res Commun. 2007a;355:513–519. doi: 10.1016/j.bbrc.2007.01.185. [DOI] [PubMed] [Google Scholar]
- Wang SQ, Du QS, Chou KC. Study of drug resistance of chicken influenza a virus (H5N1) from homology-modeled 3D structures of neuraminidases. Biochem Biophys Res Commun. 2007b;354:634–640. doi: 10.1016/j.bbrc.2006.12.235. [DOI] [PubMed] [Google Scholar]
- Wei DQ, Du QS, Sun H, Chou KC. Insights from modeling the 3D structure of H5N1 influenza virus neuraminidase and its binding interactions with ligands. Biochem Biophys Res Commun. 2006a;344:1048–1055. doi: 10.1016/j.bbrc.2006.03.210. [DOI] [PubMed] [Google Scholar]
- Wei DQ, Sirois S, Du QS, Arias HR, Chou KC. Theoretical studies of Alzheimer’s disease drug candidate [(2,4-dimethoxy) benzylidene]-anabaseine dihydrochloride (GTS-21) and its derivatives. Biochem Biophys Res Commun. 2005;338:1059–1064. doi: 10.1016/j.bbrc.2005.10.047. [DOI] [PubMed] [Google Scholar]
- Wei DQ, Zhang R, Du QS, Gao WN, Li Y, Gao H, Wang SQ, Zhang X, Li AX, Sirois S, Chou KC. Anti-SARS drug screening by molecular docking. Amino Acids. 2006b;31:73–80. doi: 10.1007/s00726-006-0361-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wei H, Zhang R, Wang C, Zheng H, Chou KC, Wei DQ. Molecular insights of SAH enzyme catalysis and their implication for inhibitor design. J Theor Biol. 2007;244:692–702. doi: 10.1016/j.jtbi.2006.09.011. [DOI] [PubMed] [Google Scholar]
- Wu YS, Lin WH, Hsu JT, Hsieh HP. Antiviral drug discovery against SARS-CoV. Curr Med Chem. 2006;13:2003–2020. doi: 10.2174/092986706777584988. [DOI] [PubMed] [Google Scholar]
- Yu XJ. Putative hAPN receptor binding sites in SARS-CoV spike protein. Acta Pharmacol Sin. 2003;24:481–488. [PubMed] [Google Scholar]
- Zhang R, Wei DQ, Du QS, Chou KC. Molecular modeling studies of peptide drug candidates against SARS. Med Chem. 2006;2:309–314. doi: 10.2174/157340606776930736. [DOI] [PubMed] [Google Scholar]
- Zhang XW, Yap YL. Exploring the binding mechanism of the main proteinase in SARS-associated coronavirus and its implication to anti-SARS drug design. Bioorg Med Chem. 2004;12:2219–2223. doi: 10.1016/j.bmc.2004.02.015. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhou GP, Troy FA. 2-D NMR analyses reveals a specific interaction between polyisoprenols (PIs) and the polyisoprenol recognition sequences (PIRS) in model membranes. Glycoconi J. 1995;12:434. [Google Scholar]
- Zhou GP, Troy FA. Characterization by NMR and molecular modeling of the binding of polyisoprenols (PI) and polyisoprenyl recognition sequence (PIRS) peptides three-dimensional structure of the complexes reveals sites of specific interactions. Glycobiology. 2003;13:51–71. doi: 10.1093/glycob/cwg008. [DOI] [PubMed] [Google Scholar]
- Zhou GP, Troy FA. Invited review: NMR studies on how the binding complex of polyisoprenol recognition sequence peptides and polyisoprenols can modulate membrane structure. Curr Protein Peptide Sci. 2005a;6:399–411. doi: 10.2174/138920305774329377. [DOI] [PubMed] [Google Scholar]
- Zhou GP, Troy FA. NMR study of the preferred membrane orientation of polyisoprenols (dolichol) and the impact of their complex with polyisoprenyl recognition sequence peptides on membrane structure. Glycobiology. 2005b;15:347–359. doi: 10.1093/glycob/cwi016. [DOI] [PubMed] [Google Scholar]
- Zhou GP, Surks HK, Schnell JR, Chou JJ, Michael E, Mendelsohn ME, Rigby AC. The three-dimensional structure of the cGMP-dependent protein kinase I-α leucine zipper domain and its interaction with the myosin binding subunit. Blood. 2004;104:963a. doi: 10.1182/blood-2004-01-0145. [DOI] [Google Scholar]
- Zhu H, Domingues FS, Sommer I, Lengauer T. NOXclass: prediction of protein protein–interaction types. BMC Bioinformatics. 2006;7:27. doi: 10.1186/1471-2105-7-27. [DOI] [PMC free article] [PubMed] [Google Scholar]
