Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 2007 Aug 28;34(1):81–90. doi: 10.1007/s00726-007-0579-z

Prediction of mutations engineered by randomness in H5N1 neuraminidases from influenza A virus

G Wu 1,, S Yan 1
PMCID: PMC7088166  PMID: 17721674

Summary.

In this proof-of-concept study, we attempt to determine whether the cause-mutation relationship defined by randomness is protein dependent by predicting mutations in H5N1 neuraminidases from influenza A virus, because we have recently conducted several concept-initiated studies on the prediction of mutations in hemagglutinins from influenza A virus. In our concept-initiated studies, we defined the randomness as a cause for mutation, upon which we built a cause-mutation relationship, which is then switched into the classification problem because the occurrence and non-occurrence of mutations can be classified as unity and zero. Thereafter, we used the logistic regression and neural network to solve this classification problem to predict the mutation positions in hemagglutinins, and then used the amino acid mutating probability to predict the would-be-mutated amino acids. As the previous results were promising, we extend this approach to other proteins, such as H5N1 neuraminidase in this study, and further address various issues raised during the development of this approach. The result of this study confirms that we can use this cause-mutation relationship to predict the mutations in H5N1 neuraminidases.

Keywords: Keywords: Influenza – Logistic regression – Mutation – Neuraminidase – Prediction

Footnotes

Authors’ address: Guang Wu, Computational Mutation Project, DreamSciTech Consulting 301, Building 12, Nanyou A-zone, Jiannan Road, Shenzhen, Guangdong Province CN-518054, China

References

  1. Air GM, Ritchie LR, Laver WG, Colman PM. Gene and protein sequence of an influenza neuraminidase with hemagglutinin activity. Virology. 1985;145:117–122. doi: 10.1016/0042-6822(85)90206-5. [DOI] [PubMed] [Google Scholar]
  2. Althaus IW, Chou JJ, Gonzales AJ, Diebel MR, Chou KC, Kezdy FJ, Romero DL, Aristoff PA, Tarpley WG, Reusser F. Steady-state kinetic studies with the non-nucleoside HIV-1 reverse transcriptase inhibitor U-87201E. J Biol Chem. 1993a;268:6119–6124. [PubMed] [Google Scholar]
  3. Althaus IW, Chou JJ, Gonzales AJ, Diebel MR, Chou KC, Kezdy FJ, Romero DL, Aristoff PA, Tarpley WG, Reusser F. Kinetic studies with the nonnucleoside HIV-1 reverse transcriptase inhibitor U-88204E. Biochemistry. 1993b;32:6548–6554. doi: 10.1021/bi00077a008. [DOI] [PubMed] [Google Scholar]
  4. Althaus IW, Gonzales AJ, Chou JJ, Diebel MR, Chou KC, Kezdy FJ, Romero DL, Aristoff PA, Tarpley WG, Reusser F. The quinoline U-78036 is a potent inhibitor of HIV-1 reverse transcriptase. J Biol Chem. 1993c;268:14875–14880. [PubMed] [Google Scholar]
  5. Bragstad K, Jorgensen PH, Handberg KJ, Mellergaard S, Corbet S, Fomsgaard A. New avian influenza A virus subtype combination H5N7 identified in Danish mallard ducks. Virus Res. 2005;109:181–190. doi: 10.1016/j.virusres.2004.12.004. [DOI] [PubMed] [Google Scholar]
  6. Campitelli L, Mogavero E, De Marco MA, Delogu M, Puzelli S, Frezza F, Facchini M, Chiapponi C, Foni E, Cordioli P, Webby R, Barigazzi G, Webster RG, Donatelli I. Interspecies transmission of an H7N3 influenza virus from wild birds to intensively reared domestic poultry in Italy. Virology. 2004;323:24–36. doi: 10.1016/j.virol.2004.02.015. [DOI] [PubMed] [Google Scholar]
  7. Chen H, Smith GJ, Li KS, Wang J, Fan XH, Rayner JM, Vijaykrishna D, Zhang JX, Zhang LJ, Guo CT, Cheung CL, Xu KM, Duan L, Huang K, Qin K, Leung YH, Wu WL, Lu HR, Chen Y, Xia NS, Naipospos TS, Yuen KY, Hassan SS, Bahri S, Nguyen TD, Webster RG, Peiris JS, Guan Y. Establishment of multiple sublineages of H5N1 influenza virus in Asia: implications for pandemic control. Proc Natl Acad Sci USA. 2006;103:2845–2850. doi: 10.1073/pnas.0511120103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Chou KC. A vectorized sequence-coupling model for predicting HIV protease cleavage sites in proteins. J Biol Chem. 1993;268:16938–16948. [PubMed] [Google Scholar]
  9. Chou JJ. A formulation for correlating properties of peptides and its application to predicting human immunodeficiency virus protease-cleavable sites in proteins. Biopolymers. 1993a;33:1405–1414. doi: 10.1002/bip.360330910. [DOI] [PubMed] [Google Scholar]
  10. Chou JJ. Predicting cleavability of peptide sequences by HIV protease via correlation-angle approach. J Protein Chem. 1993b;12:291–302. doi: 10.1007/BF01028191. [DOI] [PubMed] [Google Scholar]
  11. Chou KC. Prediction of HIV protease cleavage sites in proteins. Anal Biochem. 1996;233:1–14. doi: 10.1006/abio.1996.0001. [DOI] [PubMed] [Google Scholar]
  12. Chou KC. Insights from modelling the 3D structure of the extracellular domain of alpha7 nicotinic acetylcholine receptor. Biochem Biophys Res Commun. 2004a;319:433–438. doi: 10.1016/j.bbrc.2004.05.016. [DOI] [PubMed] [Google Scholar]
  13. Chou KC. Insights from modelling the tertiary structure of BACE2. J Proteome Res. 2004b;3:1069–1072. doi: 10.1021/pr049905s. [DOI] [PubMed] [Google Scholar]
  14. Chou KC. Molecular therapeutic target for type-2 diabetes. J Proteome Res. 2004c;3:1284–1288. doi: 10.1021/pr049849v. [DOI] [PubMed] [Google Scholar]
  15. Chou KC. Structural bioinformatics and its impact to biomedical science. Curr Med Chem. 2004d;11:2105–2134. doi: 10.2174/0929867043364667. [DOI] [PubMed] [Google Scholar]
  16. Chou KC. Modelling extracellular domains of GABA-A receptors: subtypes 1, 2, 3, and 5. Biochem Biophys Res Commun. 2004e;316:636–642. doi: 10.1016/j.bbrc.2004.02.098. [DOI] [PubMed] [Google Scholar]
  17. Chou KC. Modeling the tertiary structure of human cathepsin-E. Biochem Biophys Res Commun. 2005;331:56–60. doi: 10.1016/j.bbrc.2005.03.123. [DOI] [PubMed] [Google Scholar]
  18. Chou KC, Jones D, Heinrikson RL. Prediction of the tertiary structure and substrate binding site of caspase-8. FEBS Lett. 1997;419:49–54. doi: 10.1016/s0014-5793(97)01246-5. [DOI] [PubMed] [Google Scholar]
  19. Chou KC, Kezdy FJ, Reusser F. Steady-state inhibition kinetics of processive nucleic acid polymerases and nucleases. Anal Biochem. 1994;221:217–230. doi: 10.1006/abio.1994.1405. [DOI] [PubMed] [Google Scholar]
  20. Chou KC, Tomasselli AG, Heinrikson RL. Prediction of the tertiary structure of a caspase-9/inhibitor complex. FEBS Lett. 2000;470:249–256. doi: 10.1016/s0014-5793(00)01333-8. [DOI] [PubMed] [Google Scholar]
  21. Chou KC, Watenpaugh KD, Heinrikson RL. A model of the complex between cyclin-dependent kinase 5(Cdk5) and the activation domain of neuronal Cdk5 activator. Biochem Biophys Res Commun. 1999;259:420–428. doi: 10.1006/bbrc.1999.0792. [DOI] [PubMed] [Google Scholar]
  22. Chou KC, Wei DQ, Du QS, Sirois S, Zhong WZ. Progress in computational approach to drug development against SARS. Curr Med Chem. 2006;13:3263–3270. doi: 10.2174/092986706778773077. [DOI] [PubMed] [Google Scholar]
  23. Chou KC, Wei DQ, Zhong WZ. Binding mechanism of coronavirus main proteinase with ligands and its implication to drug design against SARS. Biochem Biophys Res Comm. 2003;308:148–151. doi: 10.1016/S0006-291X(03)01342-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Dayhoff M, Schwartz R, Orcutt B. A model of evolutionary change in protein. Atlas Protein Seq Struct. 1978;5:345–352. [Google Scholar]
  25. Donis RO, Bean WJ, Kawaoka Y, Webster RG. Distinct lineages of influenza virus H4 hemagglutinin genes in different regions of the world. Virology. 1989;169:408–417. doi: 10.1016/0042-6822(89)90166-9. [DOI] [PubMed] [Google Scholar]
  26. Draper NR, Smith H. Applied regression analysis. 2. New York: Wiley; 1981. [Google Scholar]
  27. Du QS, Mezey PG, Chou KC. Heuristic molecular lipophilicity potential (HMLP): a 2D-QSAR study to LADH of molecular family pyrazole and derivatives. J Comput Chem. 2005;26:461–470. doi: 10.1002/jcc.20174. [DOI] [PubMed] [Google Scholar]
  28. Du QS, Sun H, Chou KC. Inhibitor design for SARS coronavirus main protease based on “distorted key theory”. Med Chem. 2007;3:1–6. doi: 10.2174/157340607779317616. [DOI] [PubMed] [Google Scholar]
  29. Everitt BS. Chance rules: an informal guide to probability, risk, and statistics. New York: Springer; 1999. [Google Scholar]
  30. Feller W. An introduction to probability theory and its applications. 3. New York: Wiley; 1968. [Google Scholar]
  31. Feng DF, Johnson MS, Doolittle RF. Aligning amino acid sequences: comparison of commonly used methods. J Mol Evol. 1985;21:112–125. doi: 10.1007/BF02100085. [DOI] [PubMed] [Google Scholar]
  32. Fitch WM, Bush RM, Bender CA, Cox NJ. Long term trends in the evolution of H(3) HA1 human influenza type A. Proc Natl Acad Sci USA. 1997;94:7712–7718. doi: 10.1073/pnas.94.15.7712. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Garman E, Laver G. Controlling influenza by inhibiting the virus’s neuraminidase. Curr Drug Targ. 2004;5:119–136. doi: 10.2174/1389450043490604. [DOI] [PubMed] [Google Scholar]
  34. Gao N, Yan S, Wu G. Pattern of positions sensitive to mutations in human haemoglobin α-chain. Protein Pept Lett. 2006;13:101–107. doi: 10.2174/092986606774502090. [DOI] [PubMed] [Google Scholar]
  35. Gao WN, Wei DQ, Li Y, Gao H, Xu WR, Li AX, Chou KC. Agaritine and its derivatives are potential inhibitors against HIV proteases. Med Chem. 2007;3:221–226. doi: 10.2174/157340607780620644. [DOI] [PubMed] [Google Scholar]
  36. Gottschalk A. The specific enzyme of influenza virus and Vibrio cholerae. Biochim Biophys Acta. 1957;23:645–646. doi: 10.1016/0006-3002(57)90389-x. [DOI] [PubMed] [Google Scholar]
  37. Guan Y, Poon LL, Cheung CY, Ellis TM, Lim W, Lipatov AS, Chan KH, Sturm-Ramirez KM, Cheung CL, Leung YH, Yuen KY, Webster RG, Peiris JS. H5N1 influenza: a protean pandemic threat. Proc Natl Acad Sci USA. 2004;101:8156–8161. doi: 10.1073/pnas.0402443101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Harley VR, Ward CW, Hudson PJ. Molecular cloning and analysis of the N5 neuraminidase subtype from an avian influenza virus. Virology. 1989;169:239–243. doi: 10.1016/0042-6822(89)90063-9. [DOI] [PubMed] [Google Scholar]
  39. Healy MJR. Outliers in clinical chemistry quality-control schemes. Clin Chem. 1979;25:675–677. [PubMed] [Google Scholar]
  40. Hilleman MR. Realities and enigmas of human viral influenza: pathogenesis, epidemiology and control. Vaccine. 2002;20:3068–3087. doi: 10.1016/s0264-410x(02)00254-2. [DOI] [PubMed] [Google Scholar]
  41. Hoffmann E, Stech J, Leneva I, Krauss S, Scholtissek C, Chin PS, Peiris M, Shortridge KF, Webster RG. Characterization of the influenza A virus gene pool in avian species in southern China: was H6N1 a derivative or a precursor of H5N1? Virology. 2000;74:6309–6315. doi: 10.1128/jvi.74.14.6309-6315.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Hochgürtel M, Kroth H, Piecha D, Hofmann MW, Nicolau C, Krause S, Schaaf O, Sonnenmoser G, Eliseev AV. Target-induced formation of neuraminidase inhibitors from in vitro virtual combinatorial libraries. Proc Natl Acad Sci USA. 2002;99:3382–3387. doi: 10.1073/pnas.052703799. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Hosmer DW, Jr, Lemeshow S. Applied logistic regression. 2. New York: Wiley; 2000. [Google Scholar]
  44. Influenza virus resources (2006) http://www.ncbi.nlm.nih.gov/genomes/FLU/Database/multiple.cgi
  45. Karlin S, Ghandour G. Multiple-alphabet amino acid sequence comparisons of the immunoglobulin kappa-chain constant domain. Proc Natl Acad Sci USA. 1985;82:8597–8601. doi: 10.1073/pnas.82.24.8597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Krauss S, Walker D, Pryor SP, Niles L, Chenghong L, Hinshaw VS, Webster RG. Influenza A viruses of migrating wild aquatic birds in North America. Vector Borne Zoonotic Dis. 2004;4:177–189. doi: 10.1089/vbz.2004.4.177. [DOI] [PubMed] [Google Scholar]
  47. Lee CW, Suarez DL, Tumpey TM, Sung HW, Kwon YK, Lee YJ, Choi JG, Joh SJ, Kim MC, Lee EK, Park JM, Lu X, Katz JM, Spackman E, Swayne DE, Kim JH. Characterization of highly pathogenic H5N1 avian influenza A viruses isolated from South Korea. J Virol. 2005;79:3692–3702. doi: 10.1128/JVI.79.6.3692-3702.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Li L, Wei DQ, Wang JF, Chou KC. Computational studies of the binding mechanism of calmodulin with chrysin. Biochem Biophys Res Commun. 2007;358:1102–1107. doi: 10.1016/j.bbrc.2007.05.053. [DOI] [PubMed] [Google Scholar]
  49. Liu M, He S, Walker D, Zhou N, Perez DR, Mo B, Li F, Huang X, Webster RG, Webby RJ. The influenza virus gene pool in a poultry market in South central China. Virology. 2003;305:267–275. doi: 10.1006/viro.2002.1762. [DOI] [PubMed] [Google Scholar]
  50. Müller T, Spang R, Vingron M. Estimating amino acid substitution models: a comparison of Dayhoff’s estimator, the resolvent approach and a maximum likelihood method. Mol Biol Evol. 2002;19:8–13. doi: 10.1093/oxfordjournals.molbev.a003985. [DOI] [PubMed] [Google Scholar]
  51. Oxford J, Balasingam S, Lambkin R. A new millennium conundrum: how to use a powerful class of influenza anti-neuraminidase drugs (NAIs) in the community. J Antimicrob Chemother. 2004;53:133–136. doi: 10.1093/jac/dkh037. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Paulson JC. Interactions of animal viruses with cell surface receptors. In: Connor M, editor. The receptors. Orlando: Academic Press; 1985. pp. 131–219. [Google Scholar]
  53. Rohm C, Horimoto T, Kawaoka Y, Suss J, Webster RG. Do hemagglutinin genes of highly pathogenic avian influenza viruses constitute unique phylogenetic lineages? Virology. 1995;209:664–670. doi: 10.1006/viro.1995.1301. [DOI] [PubMed] [Google Scholar]
  54. Schreier E, Roeske H, Driesel G, Kunkel U, Petzold DR, Berlinghoff R, Michel S. Complete nucleotide sequence of the neuraminidase gene of the human influenza virus A/Chile/1/83 (H1N1) Arch Virol. 1988;99:271–276. doi: 10.1007/BF01311076. [DOI] [PubMed] [Google Scholar]
  55. Suzuki T, Takahashi T, Saito T, Guo CT, Hidari KI, Miyamoto D, Suzuki Y. Evolutional analysis of human influenza A virus N2 neuraminidase genes based on the transition of the low-pH stability of sialidase activity. FEBS Lett. 2004;557:228–232. doi: 10.1016/s0014-5793(03)01503-5. [DOI] [PubMed] [Google Scholar]
  56. Thompson TB, Chou KC, Zheng C. Neural network prediction of the HIV-1 protease cleavage sites. J Theor Biol. 1995;177:369–379. doi: 10.1006/jtbi.1995.0254. [DOI] [PubMed] [Google Scholar]
  57. Wang JF, Wei DQ, Li L, Zheng SY, Li YX, Chou KC. 3D structure modeling of cytochrome P450 2C19 and its implication for personalized drug design. Biochem Biophys Res Commun. 2007a;355:513–519. doi: 10.1016/j.bbrc.2007.01.185. [DOI] [PubMed] [Google Scholar]
  58. Wang JF, Wei DQ, Lin Y, Wang YH, Du HL, Chou KC. Insights from modeling the 3D structure of NAD(P)H-dependent D-xylose reductase of Pichia stipitis and its binding interactions with NAD and NADP. Biochem Biophys Res Commun. 2007c;359:323–329. doi: 10.1016/j.bbrc.2007.05.101. [DOI] [PubMed] [Google Scholar]
  59. Wang SQ, Du QS, Chou KC. Study of drug resistance of chicken influenza A virus (H5N1) from homology-modeled 3D structures of neuraminidases. Biochem Biophys Res Commun. 2007b;354:634–640. doi: 10.1016/j.bbrc.2006.12.235. [DOI] [PubMed] [Google Scholar]
  60. Wei DQ, Du QS, Sun H, Chou KC. Insights from modeling the 3D structure of H5N1 influenza virus neuraminidase and its binding interactions with ligands. Biochem Biophys Res Commun. 2006;344:1048–1055. doi: 10.1016/j.bbrc.2006.03.210. [DOI] [PubMed] [Google Scholar]
  61. Wei H, Zhang R, Wang C, Zheng H, Chou KC, Wei DQ. Molecular insights of SAH enzyme catalysis and their implication for inhibitor design. J Theor Biol. 2007;244:692–702. doi: 10.1016/j.jtbi.2006.09.011. [DOI] [PubMed] [Google Scholar]
  62. Wu G. An explanation for failure to predict cyclosporine area under the curve using a limited sampling strategy: a beginner’s second note. Pharmacol Res. 1997;35:547–552. doi: 10.1006/phrs.1997.0187. [DOI] [PubMed] [Google Scholar]
  63. Wu G. The first and second order Markov chain analysis on amino acids sequence of human haemoglobin α-chain and its three variants with low O2 affinity. Comp Haematol Int. 1999;9:148–151. [Google Scholar]
  64. Wu G. Frequency and Markov chain analysis of amino-acid sequence of human glutathione reductase. Biochem Biophys Res Commun. 2000a;268:823–826. doi: 10.1006/bbrc.2000.2128. [DOI] [PubMed] [Google Scholar]
  65. Wu G. Frequency and Markov chain analysis of amino-acid sequence of human tumor necrosis factor. Cancer Lett. 2000b;153:145–150. doi: 10.1016/s0304-3835(00)00394-3. [DOI] [PubMed] [Google Scholar]
  66. Wu G. Frequency and Markov chain analysis of amino-acid sequences of mouse p53. Human Exper Toxicol. 2000c;19:535–539. doi: 10.1191/096032700670531579. [DOI] [PubMed] [Google Scholar]
  67. Wu G. Frequency and Markov chain analysis of the amino acid sequence of human alcohol dehydrogenase α-chain. Alcohol Alcohol. 2000d;35:302–306. doi: 10.1093/alcalc/35.3.302. [DOI] [PubMed] [Google Scholar]
  68. Wu G. Frequency and Markov chain analysis of the amino- acid sequence of sheep p53 protein. J Biochem Mol Biol Biophys. 2000e;4:179–185. [Google Scholar]
  69. Wu G. The first, second and third order Markov chain analysis on amino acids sequence of human tyrosine aminotransferase and its variant causing tyrosinemia type II. Pediatr Relat Top. 2000f;39:37–47. [Google Scholar]
  70. Wu G. The first, second, third and fourth order Markov chain analysis on amino acids sequence of human dopamine β-hydroxylase. Mol Psychiatry. 2000g;5:448–451. doi: 10.1038/sj.mp.4000732. [DOI] [PubMed] [Google Scholar]
  71. Wu G, Baraldo M, Pea F, Cossettini P, Furlanut M. Effects of different sampling strategies on predictions of blood cyclosporine concentrations in haematological patients with multidrug resistance by Bayesian and non-linear least squares methods. Pharmacol Res. 1995;32:355–362. doi: 10.1016/s1043-6618(05)80040-4. [DOI] [PubMed] [Google Scholar]
  72. Wu G, Cossettini P, Furlanut M. Prediction of blood cyclosporine concentrations in haematological patients with multidrug resistance by one-, two- and three-compartment models using Bayesian and non-linear least squares methods. Pharmacol Res. 1996;34:47–57. doi: 10.1006/phrs.1996.0063. [DOI] [PubMed] [Google Scholar]
  73. Wu G, Yan S. Frequency and Markov chain analysis of amino-acids sequence of human platelet-activating factor acetylhydrolase α-subunit and its variant causing the lissencephaly syndrome. Pediatr Relat Top. 2000a;39:513–526. [Google Scholar]
  74. Wu G, Yan S. Prediction of two- and three-amino acid sequence of human acute myeloid leukemia 1 protein from its amino acid composition. Comp Haematol Int. 2000b;10:85–89. [Google Scholar]
  75. Wu G, Yan S. Prediction of two- and three-amino-acid sequences of Citrobacter Freundii β-lactamase from its amino acid composition. J Mol Microbiol Biotechnol. 2000c;2:277–281. [PubMed] [Google Scholar]
  76. Wu G, Yan S. Prediction of distributions of amino acids and amino acid pairs in human haemoglobin α-chain and its seven variants causing α-thalassemia from their occurrences according to the random mechanism. Comp Haematol Int. 2000d;10:80–84. [Google Scholar]
  77. Wu G, Yan S. Frequency and Markov chain analysis of amino-acid sequences of human connective tissue growth factor. J Mol Model. 2001a;5:120–124. [Google Scholar]
  78. Wu G, Yan S. Prediction of presence and absence of two- and three-amino-acid sequence of human monoamine oxidase B from its amino acid composition according to the random mechanism. Biomol Eng. 2001b;18:23–27. doi: 10.1016/s1389-0344(01)00082-x. [DOI] [PubMed] [Google Scholar]
  79. Wu G, Yan S. Prediction of presence and absence of two- and three-amino-acid sequence of human tyrosinase from their amino acid composition and related changes in human tyrosinase variant causing oculocutaneous albinism. Pediatr Relat Top. 2001c;40:153–166. [Google Scholar]
  80. Wu G, Yan S. Analysis of distributions of amino acids, amino acid pairs and triplets in human insulin precursor and four variants from their occurrences according to the random mechanism. J Biochem Mol Biol Biophys. 2001d;5:293–300. [Google Scholar]
  81. Wu G, Yan S. Analysis of distributions of amino acids and amino acid pairs in human tumor necrosis factor precursor and its eight variants according to random mechanism. J Mol Model. 2001e;7:318–323. [Google Scholar]
  82. Wu G, Yan S. Determination of amino acid pairs sensitive to variants in human low-density lipoprotein receptor precursor by means of a random approach. J Biochem Mol Biol Biophys. 2002a;6:401–406. doi: 10.1080/1025814021000036142. [DOI] [PubMed] [Google Scholar]
  83. Wu G, Yan S. Estimation of amino acid pairs sensitive to variants in human phenylalanine hydroxylase protein by means of a random approach. Peptides. 2002b;23:2085–2090. doi: 10.1016/s0196-9781(02)00249-8. [DOI] [PubMed] [Google Scholar]
  84. Wu G, Yan S. Random analysis of presence and absence of two- and three-amino-acid sequences and distributions of amino acids, two- and three-amino-acid sequences in bovine p53 protein. Mol Biol Today. 2002c;3:31–37. [Google Scholar]
  85. Wu G, Yan S. Analysis of distributions of amino acids in the primary structure of apoptosis regulator Bcl-2 family according to the random mechanism. J Biochem Mol Biol Biophys. 2002d;6:407–414. doi: 10.1080/1025814021000036106. [DOI] [PubMed] [Google Scholar]
  86. Wu G, Yan S. Analysis of distributions of amino acids in the primary structure of tumor suppressor p53 family according to the random mechanism. J Mol Model. 2002e;8:191–198. doi: 10.1007/s00894-002-0087-8. [DOI] [PubMed] [Google Scholar]
  87. Wu G, Yan S. Randomness in the primary structure of protein: methods and implications. Mol Biol Today. 2002f;3:55–69. [Google Scholar]
  88. Wu G, Yan S. Analysis of amino acid pairs sensitive to variants in human collagen α5(IV) chain precursor by means of a random approach. Peptides. 2003a;24:347–352. doi: 10.1016/s0196-9781(03)00048-2. [DOI] [PubMed] [Google Scholar]
  89. Wu G, Yan S. Determination of amino acid pairs in human haemoglobulin α-chain sensitive to variants by means of a random approach. Comp Clin Pathol. 2003b;12:21–25. [Google Scholar]
  90. Wu G, Yan S. Determination of amino acid pairs in human p53 protein sensitive to mutations/variants by means of a random approach. J Mol Model. 2003c;9:337–341. doi: 10.1007/s00894-003-0155-8. [DOI] [PubMed] [Google Scholar]
  91. Wu G, Yan S. Determination of amino acid pairs in Von Hippel-Lindau disease tumour suppressor (G7 protein) sensitive to variants by means of a random approach. J Appl Res. 2003d;3:512–520. [Google Scholar]
  92. Wu G, Yan S. Determination of amino acid pairs sensitive to variants in human β-glucocerebrosidase by means of a random approach. Protein Eng. 2003e;16:195–199. doi: 10.1093/proeng/gzg023. [DOI] [PubMed] [Google Scholar]
  93. Wu G, Yan S. Determination of amino acid pairs sensitive to variants in human Bruton’s tyrosine kinase by means of a random approach. Mol Simul. 2003f;29:249–254. [Google Scholar]
  94. Wu G, Yan S. Determination of amino acid pairs sensitive to variants in human coagulation factor IX precursor by means of a random approach. J Biomed Sci. 2003g;10:451–454. doi: 10.1007/BF02256436. [DOI] [PubMed] [Google Scholar]
  95. Wu G, Yan S. Prediction of amino acid pairs sensitive to mutations in the spike protein from SARS related coronavirus. Peptides. 2003h;24:1837–1845. doi: 10.1016/j.peptides.2003.10.008. [DOI] [PMC free article] [PubMed] [Google Scholar]
  96. Wu G, Yan S. Amino acid pairs sensitive to variants in human collagen α1(I) chain precursor. EXCLI J. 2004a;3:10–19. doi: 10.1016/s0196-9781(03)00048-2. [DOI] [PubMed] [Google Scholar]
  97. Wu G, Yan S. Determination of amino acid pairs sensitive to variants in human copper-transporting ATPase 2. Biochem Biophys Res Commun. 2004b;319:27–31. doi: 10.1016/j.bbrc.2004.04.143. [DOI] [PubMed] [Google Scholar]
  98. Wu G, Yan S. Fate of 130 hemagglutinins from different influenza A viruses. Biochem Biophys Res Commun. 2004c;317:917–924. doi: 10.1016/j.bbrc.2004.03.134. [DOI] [PubMed] [Google Scholar]
  99. Wu G, Yan S. Potential targets for anti-SARS drugs in the structural proteins from SARS related coronavirus. Peptides. 2004d;25:901–908. doi: 10.1016/j.peptides.2004.03.002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  100. Wu G, Yan S. Susceptible amino acid pairs in variants of human collagen α1(III) chain precursor. EXCLI J. 2004e;3:20–28. [Google Scholar]
  101. Wu G, Yan S. Determination of sensitive positions to mutations in human p53 protein. Biochem Biophys Res Commun. 2004f;321:313–319. doi: 10.1016/j.bbrc.2004.06.117. [DOI] [PubMed] [Google Scholar]
  102. Wu G, Yan S. Amino acid pairs susceptible to variants in human protein C precursor. Protein Pept Lett. 2005a;10:491–494. doi: 10.2174/0929866054395248. [DOI] [PubMed] [Google Scholar]
  103. Wu G, Yan S. Mutation features of 215 polymerase proteins from different influenza A viruses. Med Sci Monit. 2005b;11:BR367–BR372. [PubMed] [Google Scholar]
  104. Wu G, Yan S. Reasoning of spike glycoproteins being more vulnerable to mutations among 158 coronavirus proteins from different species. J Mol Model. 2005c;11:8–16. doi: 10.1007/s00894-004-0210-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  105. Wu G, Yan S. Timing of mutation in hemagglutinins from influenza A virus by means of unpredictable portion of amino-acid pair and fast Fourier transform. Biochem Biophys Res Commun. 2005d;333:70–78. doi: 10.1016/j.bbrc.2005.05.094. [DOI] [PubMed] [Google Scholar]
  106. Wu G, Yan S. Searching of main cause leading to severe influenza A virus mutations and consequently to influenza pandemics/epidemics. Am J Infect Dis. 2005e;1:116–123. doi: 10.3844/ajidsp.2005.116.123. [DOI] [Google Scholar]
  107. Wu G, Yan S. Prediction of mutation trend in hemagglutinins and neuraminidases from influenza A viruses by means of cross-impact analysis. Biochem Biophys Res Commun. 2005f;326:475–482. doi: 10.1016/j.bbrc.2004.11.052. [DOI] [PubMed] [Google Scholar]
  108. Wu G, Yan S. Determination of mutation trend in proteins by means of translation probability between RNA codes and mutated amino acids. Biochem Biophys Res Commun. 2005g;337:692–700. doi: 10.1016/j.bbrc.2005.09.106. [DOI] [PMC free article] [PubMed] [Google Scholar]
  109. Wu G, Yan S. Fate of influenza A virus proteins. Protein Pept Lett. 2006a;13:377–384. doi: 10.2174/092986606775974474. [DOI] [PubMed] [Google Scholar]
  110. Wu G, Yan S. Mutation trend of hemagglutinin of influenza A virus: a review from computational mutation viewpoint. Acta Pharmacol Sin. 2006b;27:513–526. doi: 10.1111/j.1745-7254.2006.00329.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  111. Wu G, Yan S. Timing of mutation in hemagglutinins from influenza A virus by means of amino-acid distribution rank and fast Fourier transform. Protein Pept Lett. 2006c;13:143–148. doi: 10.2174/092986606775101616. [DOI] [PubMed] [Google Scholar]
  112. Wu G, Yan S. Determination of mutation trend in hemagglutinins by means of translation probability between RNA codons and mutated amino acids. Protein Pept Lett. 2006d;13:601–609. doi: 10.2174/092986606777145779. [DOI] [PubMed] [Google Scholar]
  113. Wu G, Yan S. Prediction of possible mutations in H5N1 hemagglutinins of influenza A virus by means of logistic regression. Comp Clin Pathol. 2006e;15:255–261. [Google Scholar]
  114. Wu G, Yan S. Prediction of mutations in H5N1 hemagglutinins from influenza A virus. Protein Pept Lett. 2006f;13:971–976. doi: 10.2174/092986606778777533. [DOI] [PubMed] [Google Scholar]
  115. Wu G, Yan S. Improvement of model for prediction of hemagglutinin mutations in H5N1 influenza viruses with distinguishing of arginine, leucine and serine. Protein Pept Lett. 2007a;14:191–196. doi: 10.2174/092986607779816032. [DOI] [PubMed] [Google Scholar]
  116. Wu G, Yan S. Translation probability between RNA codons and translated amino acids, and its applications to protein mutations. In: Ostrovskiy MH, editor. Leading-edge messenger RNA research communications. New York: Nova Science Publishers; 2007b. [Google Scholar]
  117. Wu G, Yan S. Improvement of prediction of mutation positions in H5N1 hemagglutinins of influenza A virus using neural network with distinguishing of arginine, leucine and serine. Protein Pept Lett. 2007c;14:465–470. doi: 10.2174/092986607780782713. [DOI] [PubMed] [Google Scholar]
  118. Wu G, Yan S (2007d) Prediction of mutations initiated by internal power in H3N2 hemagglutinins of influenza A virus from North America. Int J Pept Res Ther ( 10.1007/s10989-007-9104-1) [DOI]
  119. Zambon MC. Epidemiology and pathogenesis of influenza. J Antimicrob Chemother. 1999;44(Suppl B):3–9. doi: 10.1093/jac/44.suppl_2.3. [DOI] [PubMed] [Google Scholar]

Articles from Amino Acids are provided here courtesy of Nature Publishing Group

RESOURCES