Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 2006;23(1):59–72. doi: 10.1007/s10719-006-5438-8

Structure, function and evolution of the hemagglutinin-esterase proteins of corona- and toroviruses

Raoul J de Groot 1,
PMCID: PMC7088178  PMID: 16575523

Abstract

Virus attachment to host cells is mediated by dedicated virion proteins, which specifically recognize one or, at most, a limited number of cell surface molecules. Receptor binding often involves protein-protein interactions, but carbohydrates may serve as receptor determinants as well. In fact, many different viruses use members of the sialic acid family either as their main receptor or as an initial attachment factor. Sialic acids (Sias) are 9-carbon negatively-charged monosaccharides commonly occurring as terminal residues of glycoconjugates. They come in a large variety and are differentially expressed in cells and tissues. By targeting specific Sia subtypes, viruses achieve host cell selectivity, but only to a certain extent. The Sia of choice might still be abundantly present on non-cell associated molecules, on non-target cells (including cells already infected) and even on virus particles themselves. This poses a hazard, as high-affinity virion binding to any of such “false'' receptors would result in loss of infectivity. Some enveloped RNA viruses deal with this problem by encoding virion-associated receptor-destroying enzymes (RDEs). These enzymes make the attachment to Sia reversible, thus providing the virus with an escape ticket. RDEs occur in two types: neuraminidases and sialate-O-acetylesterases. The latter, originally discovered in influenza C virus, are also found in certain nidoviruses, namely in group 2 coronaviruses and in toroviruses, as well as in infectious salmon anemia virus, an orthomyxovirus of teleosts. Here, the structure, function and evolution of viral sialate-O-acetylesterases is reviewed with main focus on the hemagglutinin-esterases of nidoviruses.

Keywords: Influenza, Sialic Acid, Cell Surface Molecule, Terminal Residue, Infectious Salmon Anemia Virus

References

  • 1.Angata T., Varki A. Chemical diversity in the sialic acids and related alpha-keto acids: An evolutionary perspective. Chem. Rev. 2002;102:439–69. doi: 10.1021/cr000407m. [DOI] [PubMed] [Google Scholar]
  • 2.Schauer, R., Kamerling, J.P.: Chemistry, biochemistry and biology of sialic acids. in J. Montreuil, J.F.G. Vliegenthart, H. Schachter, (Eds.), Glycoproteins II, Elsevier Science, 1997, pp. 243– 402.
  • 3.Schauer R. Sialic acids: Fascinating sugars in higher animals and man. Zoology. 2004;107:49–64. doi: 10.1016/j.zool.2003.10.002. [DOI] [PubMed] [Google Scholar]
  • 4.Herrler G., Klenk H.D. Structure and function of the HEF glycoprotein of influenza C virus. Adv Virus Res. 1991;40:213–34. doi: 10.1016/S0065-3527(08)60280-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Brian D.A., Hogue B.G., Kienzle T.E. The coronavirus hemagglutinin esterase glycoprotein. In: Siddell S.G., editor. The Coronaviridae. New York: Plenum Press; 1995. pp. 165–179. [Google Scholar]
  • 6.Hirst G.K. Adsorption of influenza hemagglutinins and virus by red blood cells. J. Exp. Med. 1942;76:195–209. doi: 10.1084/jem.76.2.195. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Hirst G.K. The agglutination of red cells by allantoic fluid of chick embryos infected with influenza virus. Science. 1941;94:22–23. doi: 10.1126/science.94.2427.22. [DOI] [PubMed] [Google Scholar]
  • 8.Hirst G.K. Receptor destruction by viruses of the mumps-NDV-influenza group. J. Exp. Med. 1950;91:161–75. doi: 10.1084/jem.91.2.161. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Klenk E., Faillard H., Lempfrid H. Über die enzymatische Wirkung von Influenzavirus. Hoppe. Seylers. Z. Physiol. Chem. 1955;301:235–46. [PubMed] [Google Scholar]
  • 10.Gottschalk A. Neuraminidase: The specific enzyme of influenza virus and Vibrio cholerae. Biochim. Biophys. Acta. 1957;23.:645–646. doi: 10.1016/0006-3002(57)90389-X. [DOI] [PubMed] [Google Scholar]
  • 11.Hirst G.K. The relationship of the receptors of a new strain of virus to those of the mumps-NDV-influenza group. J. Exp. Med. 1950;91:177–84. doi: 10.1084/jem.91.2.177. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Herrler G., Rott R., Klenk H.D. Neuraminic acid is involved in the binding of influenza C virus to erythrocytes. Virology. 1985;141:144–7. doi: 10.1016/0042-6822(85)90190-4. [DOI] [PubMed] [Google Scholar]
  • 13.Kitame F., Nakamura K., Saito A., Sinohara H., Homma M. Isolation and characterization of influenza C virus inhibitor in rat serum. Virus. Res. 1985;3:231–44. doi: 10.1016/0168-1702(85)90048-6. [DOI] [PubMed] [Google Scholar]
  • 14.Kendal A.P. A comparison of “influenza C” with prototype myxoviruses: Receptor-destroycing activity (neuraminidase) and structural polypeptides. Virology. 1975;65:87–99. doi: 10.1016/0042-6822(75)90009-4. [DOI] [PubMed] [Google Scholar]
  • 15.Nerome K., Ishida M., Nakayama M. Absence of neuraminidase from influenza C virus. Arch. Virol. 1976;50:241–4. doi: 10.1007/BF01320578. [DOI] [PubMed] [Google Scholar]
  • 16.Herrler G., Rott R., Klenk H.D., Müller H.P., Shukla A.K., Schauer R. The receptor-destroying enzyme of influenza C virus is neuraminate-O-acetylesterase. EMBO. J. 1985;4:1503–6. doi: 10.1002/j.1460-2075.1985.tb03809.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Rogers G.N., Herrler G., Paulson J.C., Klenk H.D. Influenza C virus uses 9-O-acetyl-N-acetylneuraminic acid as a high affinity receptor determinant for attachment to cells. J. Biol. Chem. 1986;261:5947–51. [PubMed] [Google Scholar]
  • 18.Herrler G., Klenk H.D. The surface receptor is a major determinant of the cell tropism of influenza C virus. Virology. 1987;159:102–8. doi: 10.1016/0042-6822(87)90352-7. [DOI] [PubMed] [Google Scholar]
  • 19.Schauer R., Reuter G., Stoll S., Posadas del Rio F, Herrler G, Klenk HD. Isolation and characterization of sialate 9(4)-O-acetylesterase from influenza C virus. Biol. Chem. Hoppe. Seyler. 1988;369:1121–30. doi: 10.1515/bchm3.1988.369.2.1121. [DOI] [PubMed] [Google Scholar]
  • 20.Lamb R.A., Krug R.M. Orthomyxoviridae: He viruses and their replication. In: Knipe D.M., Howley P.M., editors. Fields Virology. Philadelphia: Lippincott Williams & Wilkins; 2001. pp. 1487–1531. [Google Scholar]
  • 21.Vlasak R., Krystal M., Nacht M., Palese P. The influenza C virus glycoprotein (HE) exhibits receptor-binding (hemagglutinin) and receptor-destroying (esterase) activities. Virology. 1987;160:419–25. doi: 10.1016/0042-6822(87)90013-4. [DOI] [PubMed] [Google Scholar]
  • 22.Muchmore E.A., Varki A. Selective inactivation of influenza C esterase: A probe for detecting 9-O-acetylated sialic acids. Science. 1987;236:1293–5. doi: 10.1126/science.3589663. [DOI] [PubMed] [Google Scholar]
  • 23.Herrler G., Dürkop I., Becht H., Klenk H.D. The glycoprotein of influenza C virus is the haemagglutinin, esterase and fusion factor. J. Gen. Virol. 1988;69:839–46. doi: 10.1099/0022-1317-69-4-839. [DOI] [PubMed] [Google Scholar]
  • 24.Pekosz A., Lamb R.A. Cell surface expression of biologically active influenza C virus HEF glycoprotein expressed from cDNA. J. Virol. 1999;73:8808–12. doi: 10.1128/jvi.73.10.8808-8812.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Ohuchi M., Ohuchi R., Mifune K. Demonstration of hemolytic and fusion activities of influenza C virus. J. Virol. 1982;42:1076–9. doi: 10.1128/jvi.42.3.1076-1079.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Kitame F., Sugawara K., Ohwada K., Homma M. Proteolytic activation of hemolysis and fusion by influenza C virus. Arch. Virol. 1982;73:357–61. doi: 10.1007/BF01318090. [DOI] [PubMed] [Google Scholar]
  • 27.Formanowski F., Meier-Ewert H. Isolation of the influenza C virus glycoprotein in a soluble form by bromelain digestion. Virus. Res. 1988;10:177–91. doi: 10.1016/0168-1702(88)90014-7. [DOI] [PubMed] [Google Scholar]
  • 28.Nakada S., Creager R.S., Krystal M., Aaronson R.P., Palese P. Influenza C virus hemagglutinin: Comparison with influenza A and B virus hemagglutinins. J. Virol. 1984;50:118–24. doi: 10.1128/jvi.50.1.118-124.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Pfeifer J.B., Compans R.W. Structure of the influenza C glycoprotein gene as determined from cloned DNA. Virus. Res. 1984;1:281–96. doi: 10.1016/0168-1702(84)90017-0. [DOI] [PubMed] [Google Scholar]
  • 30.Cornelissen L.A., Wierda C.M., van der Meer F.J., Herrewegh A.A., Horzinek M.C., Egberink H.F., de Groot R.J. Hemagglutinin-esterase, a novel structural protein of torovirus. J. Virol. 1997;71:5277–86. doi: 10.1128/jvi.71.7.5277-5286.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31.Rosenthal P.B., Zhang X., Formanowski F., Fitz W., Wong C.H., Meier-Ewert H., Skehel J.J., Wiley D.C. Structure of the haemagglutinin-esterase-fusion glycoprotein of influenza C virus. Nature. 1998;396:92–6. doi: 10.1038/23974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.Compans R.W., Bishop D.H., Meier-Ewert H. Structural components of influenza C virions. J. Virol. 1977;21:658–65. doi: 10.1128/jvi.21.2.658-665.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33.Herrler G., Nagele A., Meier-Ewert H., Bhown A.S., Compans R.W. Isolation and structural analysis of influenza C virion glycoproteins. Virology. 1981;113:439–51. doi: 10.1016/0042-6822(81)90173-2. [DOI] [PubMed] [Google Scholar]
  • 34.Hewat E.A., Cusack S., Ruigrok R.W., Verwey C. Low resolution structure of the influenza C glycoprotein determined by electron microscopy. J. Mol. Biol. 1984;175:175–93. doi: 10.1016/0022-2836(84)90473-X. [DOI] [PubMed] [Google Scholar]
  • 35.Herrler G., Compans R.W., Meier-Ewert H. A precursor glycoprotein in influenza C virus. Virology. 1979;99:49–56. doi: 10.1016/0042-6822(79)90035-7. [DOI] [PubMed] [Google Scholar]
  • 36.Vlasak R., Muster T., Lauro A.M., Powers J.C., Palese P. Influenza C virus esterase: Analysis of catalytic site, inhibition, and possible function. J. Virol. 1989;63:2056–62. doi: 10.1128/jvi.63.5.2056-2062.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37.Zhang X., Rosenthal P.B., Formanowski F., Fitz W., Wong C.H., Meier-Ewert H., Skehel J.J., Wiley D.C. X-ray crystallographic determination of the structure of the influenza C virus haemagglutinin-esterase-fusion glycoprotein. Acta. Crystallogr. D. Biol. Crystallogr. 1999;55:945–61. doi: 10.1107/S0907444999000232. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38.Szepanski S., Gross H.J., Brossmer R., Klenk H.D., Herrler G. A single point mutation of the influenza C virus glycoprotein (HEF) changes the viral receptor-binding activity. Virology. 1992;188:85–92. doi: 10.1016/0042-6822(92)90737-A. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 39.Matsuzaki M., Sugawara K., Adachi K., Hongo S., Nishimura H., Kitame F., Nakamura K. Location of neutralizing epitopes on the hemagglutinin-esterase protein of influenza C virus. Virology. 1992;189:79–87. doi: 10.1016/0042-6822(92)90683-G. [DOI] [PubMed] [Google Scholar]
  • 40.Umetsu Y., Sugawara K., Nishimura H., Hongo S., Matsuzaki M., Kitame F., Nakamura K. Selection of antigenically distinct variants of influenza C viruses by the host cell. Virology. 1992;189:740–4. doi: 10.1016/0042-6822(92)90597-I. [DOI] [PubMed] [Google Scholar]
  • 41.Marschall M., Herrler G., Boswald C., Foerst G., Meier-Ewert H. Persistent influenza C virus possesses distinct functional properties due to a modified HEF glycoprotein. J. Gen. Virol. 1994;75:2189–96. doi: 10.1099/0022-1317-75-9-2189. [DOI] [PubMed] [Google Scholar]
  • 42.Pleschka S., Klenk H.D., Herrler G. The catalytic triad of the influenza C virus glycoprotein HEF esterase: Characterization by site-directed mutagenesis and functional analysis. J. Gen. Virol. 1995;76:2529–37. doi: 10.1099/0022-1317-76-10-2529. [DOI] [PubMed] [Google Scholar]
  • 43.Luytjes W., Bredenbeek P.J., Noten A.F., Horzinek M.C., Spaan W.J. Sequence of mouse hepatitis virus A59 mRNA 2: Indications for RNA recombination between coronaviruses and influenza C virus. Virology. 1988;166:415–22. doi: 10.1016/0042-6822(88)90512-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 44.Snijder E.J., den Boon J.A., Horzinek M.C., Spaan W.J. Comparison of the genome organization of toro- and coronaviruses: Evidence for two nonhomologous RNA recombination events during Berne virus evolution. Virology. 1991;180:448–52. doi: 10.1016/0042-6822(91)90056-H. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 45.Snijder E.J., den Boon J.A., Bredenbeek P.J., Horzinek M.C., Rijnbrand R., Spaan W.J. The carboxyl-terminal part of the putative Berne virus polymerase is expressed by ribosomal frameshifting and contains sequence motifs which indicate that toro- and coronaviruses are evolutionarily related. Nucleic Acids Res. 1990;18:4535–42. doi: 10.1093/nar/18.15.4535. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 46.Gonzalez J.M., Gomez-Puertas P., Cavanagh D., Gorbalenya A.E., Enjuanes L. A comparative sequence analysis to revise the current taxonomy of the family Coronaviridae. Arch. Virol. 2003;148:2207–35. doi: 10.1007/s00705-003-0162-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 47.Cavanagh D. Nidovirales: A new order comprising Coronaviridae and Arteriviridae. Arch. Virol. 1997;142:629–33. [PubMed] [Google Scholar]
  • 48.Spaan, W.J.M., Brian, D.A., Cavanagh, D., de Groot, R.J., Enjuanes, L., Gorbalenya, A.E., Holmes, K.V., Masters, P., Rottier, P.J.M., Taguchi, F., Talbot, P.J.: Virus Taxonomy; Reports of the International Committee on Taxonomy of Viruses, 8th ed. C.M. Fauquet, M.A. Mayo, J. Maniloff, U. Desselberger, L.A. Ball, (Eds.), Academic Press, 2004, pp. 945–962.
  • 49.Marra M.A., Jones S.J., Astell C.R., Holt R.A., Brooks-Wilson A., Butterfield Y.S., Khattra J., Asano J.K., Barber S.A., Chan S.Y., Cloutier A., Coughlin S.M., Freeman D., Girn N., Griffith O.L., Leach S.R., Mayo M., McDonald H., Montgomery S.B., Pandoh P.K., Petrescu A.S., Robertson A.G., Schein J.E., Siddiqui A., Smailus D.E., Stott J.M., Yang G.S., Plummer F., Andonov A., Artsob H., Bastien N., Bernard K., Booth T.F., Bowness D., Czub M., Drebot M., Fernando L., Flick R., Garbutt M., Gray M., Grolla A., Jones S., Feldmann H., Meyers A., Kabani A., Li Y., Normand S., Stroher U., Tipples G.A., Tyler S., Vogrig R., Ward D., Watson B., Brunham R.C., Krajden M., Petric M., Skowronski D.M., Upton C., Roper R.L. The Genome sequence of the SARS-associated coronavirus. Science. 2003;300:1399–404. doi: 10.1126/science.1085953. [DOI] [PubMed] [Google Scholar]
  • 50.Rota P.A., Oberste M.S., Monroe S.S., Nix W.A., Campagnoli R., Icenogle J.P., Penaranda S., Bankamp B., Maher K., Chen M.H., Tong S., Tamin A., Lowe L., Frace M., DeRisi J.L., Chen Q., Wang D., Erdman D.D., Peret T.C., Burns C., Ksiazek T.G., Rollin P.E., Sanchez A., Liffick S., Holloway B., Limor J., McCaustland K., Olsen-Rasmussen M., Fouchier R., Gunther S., Osterhaus A.D., Drosten C., Pallansch M.A., Anderson L.J., Bellini W.J. Characterization of a novel coronavirus associated with severe acute respiratory syndrome. Science. 2003;300:1394–9. doi: 10.1126/science.1085952. [DOI] [PubMed] [Google Scholar]
  • 51.van der Hoek L., Pyrc K., Jebbink M.F., Vermeulen-Oost W, Berkhout RJM, Wolthers KC, Wertheim-van Dillen PME, Kaandorp J, Spaargaren J, Berkhout B. Identification of a new human coronavirus. Nature Med. 2004;10:368–373. doi: 10.1038/nm1024. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 52.Woo P.C., Lau S.K., Chu C.M., Chan K.H., Tsoi H.W., Huang Y., Wong B.H., Poon R.W., Cai J.J., Luk W.K., Poon L.L., Wong S.S., Guan Y., Peiris J.S., Yuen K.Y. Characterization and complete genome sequence of a novel coronavirus, coronavirus HKU1, from patients with pneumonia. J. Virol. 2005;79:884–95. doi: 10.1128/JVI.79.2.884-895.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 53.de Vries A.A.F., Horzinek M.C., Rottier P.J.M., de Groot R.J. The genome organization of the Nidovirales: Similarities and differences between Arteri-, Toro-, and Coronaviruses. Sem. Virol. 1997;8:33–47. doi: 10.1006/smvy.1997.0104. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 54.Den Boon J.A., Snijder E.J., Locker J.K., Horzinek M.C., Rottier P.J. Another triple-spanning envelope protein among intracellularly budding RNA viruses: The torovirus E protein. Virology. 1991;182:655–63. doi: 10.1016/0042-6822(91)90606-C. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 55.de Groot R.J., Luytjes W., Horzinek M.C., van der Zeijst B.A., Spaan W.J., Lenstra J.A. Evidence for a coiled-coil structure in the spike proteins of coronaviruses. J. Mol. Biol. 1987;196:963–6. doi: 10.1016/0022-2836(87)90422-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 56.Bosch B.J., van der Zee R., de Haan C.A., Rottier P.J. The coronavirus spike protein is a class I virus fusion protein: Structural and functional characterization of the fusion core complex. J. Virol. 2003;77:8801–11. doi: 10.1128/JVI.77.16.8801-8811.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 57.Bosch B.J., Martina B.E., Van Der Zee R., Lepault J., Haijema B.J., Versluis C., Heck A.J., Osterhaus AD, Rottier PJ. Severe acute respiratory syndrome coronavirus (SARS-CoV) infection inhibition using spike protein heptad repeat-derived peptides. Proc. Natl. Acad. Sci. USA. 2004;101:8455–60. doi: 10.1073/pnas.0400576101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 58.Snijder E.J., Den Boon J.A., Spaan W.J., Weiss M., Horzinek M.C. Primary structure and post-translational processing of the Berne virus peplomer protein. Virology. 1990;178:355–63. doi: 10.1016/0042-6822(90)90332-L. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 59.Cavanagh D. The coronavirus surface glycoprotein. In: Siddell S.G., editor. The Coronaviridae. New York: Plenum Press; 1995. pp. 73–113. [Google Scholar]
  • 60.Gallagher T.M., Buchmeier M.J. Coronavirus spike proteins in viral entry and pathogenesis. Virology. 2001;279:371–374. doi: 10.1006/viro.2000.0757. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 61.Yokomori K., La Monica N., Makino S., Shieh C.K., Lai M.M. Biosynthesis, structure, and biological activities of envelope protein gp65 of murine coronavirus. Virology. 1989;173:683–91. doi: 10.1016/0042-6822(89)90581-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 62.Hogue B.G., Kienzle T.E., Brian D.A. Synthesis and processing of the bovine enteric coronavirus haemagglutinin protein. J. Gen. Virol. 1989;70:345–52. doi: 10.1099/0022-1317-70-2-345. [DOI] [PubMed] [Google Scholar]
  • 63.Kienzle T.E., Abraham S., Hogue B.G., Brian D.A. Structure and orientation of expressed bovine coronavirus hemagglutinin-esterase protein. J. Virol. 1990;64:1834–8. doi: 10.1128/jvi.64.4.1834-1838.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 64.Bridger J.C., Caul E.O., Egglestone S.I. Replication of an enteric bovine coronavirus in intestinal organ cultures. Arch. Virol. 1978;57:43–51. doi: 10.1007/BF01315636. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 65.Sugiyama K., Amano Y. Morphological and biological properties of a new coronavirus associated with diarrhea in infant mice. Arch. Virol. 1981;67:241–51. doi: 10.1007/BF01318134. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 66.Shieh C.K., Lee H.J., Yokomori K., La Monica N., Makino S., Lai M.M. Identification of a new transcriptional initiation site and the corresponding functional gene 2b in the murine coronavirus RNA genome. J. Virol. 1989;63:3729–36. doi: 10.1128/jvi.63.9.3729-3736.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 67.Deregt D., Sabara M., Babiuk L.A. Structural proteins of bovine coronavirus and their intracellular processing. J. Gen. Virol. 1987;68:2863–77. doi: 10.1099/0022-1317-68-11-2863. [DOI] [PubMed] [Google Scholar]
  • 68.King B., Brian D.A. Bovine coronavirus structural proteins. J. Virol. 1982;42:700–7. doi: 10.1128/jvi.42.2.700-707.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 69.King B., Potts B.J., Brian D.A. Bovine coronavirus hemagglutinin protein. Virus. Res. 1985;2:53–9. doi: 10.1016/0168-1702(85)90059-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 70.Hogue B.G., Brian D.A. Structural proteins of human respiratory coronavirus OC43. Virus Res. 1986;5:131–44. doi: 10.1016/0168-1702(86)90013-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 71.Vlasak R., Luytjes W., Spaan W., Palese P. Human and bovine coronaviruses recognize sialic acid-containing receptors similar to those of influenza C viruses. Proc. Natl. Acad. Sci. USA. 1988;85:4526–9. doi: 10.1073/pnas.85.12.4526. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 72.Vlasak R., Luytjes W., Leider J., Spaan W., Palese P. The E3 protein of bovine coronavirus is a receptor-destroying enzyme with acetylesterase activity. J. Virol. 1988;62:4686–90. doi: 10.1128/jvi.62.12.4686-4690.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 73.Schultze B., Herrler G. Bovine coronavirus uses N-acetyl-9-O-acetylneuraminic acid as a receptor determinant to initiate the infection of cultured cells. J. Gen. Virol. 1992;73:901–6. doi: 10.1099/0022-1317-73-4-901. [DOI] [PubMed] [Google Scholar]
  • 74.Pfleiderer M., Routledge E., Herrler G., Siddell S.G. High level transient expression of the murine coronavirus haemagglutinin-esterase. J. Gen. Virol. 1991;72:1309–15. doi: 10.1099/0022-1317-72-6-1309. [DOI] [PubMed] [Google Scholar]
  • 75.Parker M.D., Yoo D., Babiuk L.A. Expression and secretion of the bovine coronavirus hemagglutinin-esterase glycoprotein by insect cells infected with recombinant baculoviruses. J. Virol. 1990;64:1625–9. doi: 10.1128/jvi.64.4.1625-1629.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 76.Yoo D., Graham F.L., Prevec L., Parker M.D., Benko M., Zamb T., Babiuk L.A. Synthesis and processing of the haemagglutinin-esterase glycoprotein of bovine coronavirus encoded in the E3 region of adenovirus. J. Gen. Virol. 1992;73:2591–600. doi: 10.1099/0022-1317-73-10-2591. [DOI] [PubMed] [Google Scholar]
  • 77.Yokomori K., Banner L.R., Lai M.M. Heterogeneity of gene expression of the hemagglutinin-esterase (HE) protein of murine coronaviruses. Virology. 1991;183:647–57. doi: 10.1016/0042-6822(91)90994-M. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 78.Siddell S., Wege H., Barthel A., ter Meulen V. Coronavirus JHM: Intracellular protein synthesis. J. Gen. Virol. 1981;53:145–55. doi: 10.1099/0022-1317-53-1-145. [DOI] [PubMed] [Google Scholar]
  • 79.Siddell S.G. Coronavirus JHM: Tryptic peptide fingerprinting of virion proteins and intracellular polypeptides. J. Gen. Virol. 1982;62:259–69. doi: 10.1099/0022-1317-62-2-259. [DOI] [PubMed] [Google Scholar]
  • 80.Sugiyama K., Amano Y. Hemagglutination and structural polypeptides of a new coronavirus associated with diarrhea in infant mice. Arch. Virol. 1980;66:95–105. doi: 10.1007/BF01314978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 81.Sugiyama K., Ishikawa R., Fukuhara N. Structural polypeptides of the murine coronavirus DVIM, Arch. Virol. 1986;89:245–54. doi: 10.1007/BF01309893. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 82.Duckmanton L.M., Tellier R., Liu P., Petric M. Bovine torovirus: Sequencing of the structural genes and expression of the nucleocapsid protein of Breda virus. Virus Res. 1998;58:83–96. doi: 10.1016/S0168-1702(98)00104-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 83.Smits S.L., Lavazza A., Matiz K., Horzinek M.C., Koopmans M.P., de Groot R.J. Phylogenetic and evolutionary relationships among torovirus field variants: Evidence for multiple intertypic recombination events. J. Virol. 2003;77:9567–77. doi: 10.1128/JVI.77.17.9567-9577.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 84.Kroneman A., Cornelissen L.A., Horzinek M.C., de Groot R.J., Egberink H.F. Identification and characterization of a porcine torovirus. J. Virol. 1998;72:3507–3511. doi: 10.1128/jvi.72.5.3507-3511.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 85.Wagaman P.C., Spence H.A., O'Callaghan R.J. Detection of influenza C virus by using an in situ esterase assay. J. Clin. Microbiol. 1989;27:832–836. doi: 10.1128/jcm.27.5.832-836.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 86.Smits S.L., Gerwig G.J., van Vliet A.L., Lissenberg A., Briza P., Kamerling J.P., Vlasak R., de Groot R.J. Nidovirus sialate-O-acetylesterases: Evolution and substrate specificity of coronaviral and toroviral receptor-destroying enzymes. J. Biol. Chem. 2005;280:6933–41. doi: 10.1074/jbc.M409683200. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 87.Snijder E.J., Bredenbeek P.J., Dobbe J.C., Thiel V., Ziebuhr J., Poon L.L., Guan Y., Rozanov M., Spaan W.J., Gorbalenya A.E. Unique and conserved features of genome and proteome of SARS-coronavirus, an early split-off from the coronavirus group 2 lineage. J. Mol. Biol. 2003;331:991–1004. doi: 10.1016/S0022-2836(03)00865-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 88.Falk K., Aspehaug V., Vlasak R., Endresen C. Identification and characterization of viral structural proteins of infectious salmon anemia virus. J. Virol. 2004;78:3063–71. doi: 10.1128/JVI.78.6.3063-3071.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 89.Hellebø A., Vilas U., Falk K., Vlasak R. Infectious salmon anemia virus specifically binds to and hydrolyzes 4-O-acetylated sialic acids. J. Virol. 2004;78:3055–62. doi: 10.1128/JVI.78.6.3055-3062.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 90.Duckmanton L., Tellier R., Richardson C., Petric M. Notice of retraction to “The novel hemagglutinin-esterase genes of human torovirus and Breda virus”. [Virus Research. 1999;64:137–149. doi: 10.1016/S0168-1702(99)00088-X. [DOI] [PMC free article] [PubMed] [Google Scholar] [Retracted]
  • 91.Duckmanton L., Tellier R., Richardson C., Petric M. The novel hemagglutinin-esterase genes of human torovirus and Breda virus. Virus. Res. 1999;64:137–49. doi: 10.1016/S0168-1702(99)00088-X. [DOI] [PMC free article] [PubMed] [Google Scholar] [Retracted]
  • 92.Callebaut P.E., Pensaert M.B. Characterization and isolation of structural polypeptides in haemagglutinating encephalomyelitis virus. J. Gen. Virol. 1980;48:193–204. doi: 10.1099/0022-1317-48-1-193. [DOI] [PubMed] [Google Scholar]
  • 93.Schultze B., Wahn K., Klenk H.D., Herrler G. Isolated HE-protein from hemagglutinating encephalomyelitis virus and bovine coronavirus has receptor-destroying and receptor-binding activity. Virology. 1991;180:221–8. doi: 10.1016/0042-6822(91)90026-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 94.Nuttall P.A., Harrap K.A. Isolation of a coronavirus during studies on puffinosis, a disease of the Manx shearwater (Puffinus puffinus) Arch. Virol. 1982;73:1–13. doi: 10.1007/BF01341722. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 95.Klausegger A., Strobl B., Regl G., Kaser A., Luytjes W., Vlasak R. Identification of a coronavirus hemagglutinin-esterase with a substrate specificity different from those of influenza C virus and bovine coronavirus. J. Virol. 1999;73:3737–43. doi: 10.1128/jvi.73.5.3737-3743.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 96.Wurzer W.J., Obojes K., Vlasak R. The sialate-4-O-acetylesterases of coronaviruses related to mouse hepatitis virus: A proposal to reorganize group 2 Coronaviridae. J. Gen. Virol. 2002;83:395–402. doi: 10.1099/0022-1317-83-2-395. [DOI] [PubMed] [Google Scholar]
  • 97.Regl G., Kaser A., Iwersen M., Schmid H., Kohla G., Strobl B., Vilas U., Schauer R., Vlasak R. The hemagglutinin-esterase of mouse hepatitis virus strain S is a sialate-4-O-acetylesterase. J. Virol. 1999;73:4721–7. doi: 10.1128/jvi.73.6.4721-4727.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 98.Strasser P., Unger U., Strobl B., Vilas U., Vlasak R. Recombinant viral sialate-O-acetylesterases. Glycoconjugate. J. 2004;20:551–61. doi: 10.1023/B:GLYC.0000043292.64358.f1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 99.Talbot P.J. Hemagglutination by murine hepatitis viruses. Absence of detectable activity in strains 3, A59, and S grown on DBT cells. Intervirology. 1989;30:117–20. doi: 10.1159/000150083. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 100.Künkel F., Herrler G. Structural and functional analysis of the surface protein of human coronavirus OC43. Virology. 1993;195:195–202. doi: 10.1006/viro.1993.1360. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 101.Künkel F., Herrler G. Structural and functional analysis of the S proteins of two human coronavirus OC43 strains adapted to growth in different cells, Arch. Virol. 1996;141:1123–31. doi: 10.1007/BF01718615. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 102.Sugiyama K., Kasai M., Kato S., Kasai H., Hatakeyama K. Haemagglutinin-esterase protein (HE) of murine corona virus: DVIM (diarrhea virus of infant mice) Arch. Virol. 1998;143:1523–34. doi: 10.1007/s007050050395. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 103.Schultze B., Gross H.J., Brossmer R., Herrler G. The S protein of bovine coronavirus is a hemagglutinin recognizing 9-O-acetylated sialic acid as a receptor determinant. J. Virol. 1991;65:6232–7. doi: 10.1128/jvi.65.11.6232-6237.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 104.Deregt D., Babiuk L.A. Monoclonal antibodies to bovine coronavirus: Characteristics and topographical mapping of neutralizing epitopes on the E2 and E3 glycoproteins. Virology. 1987;161:410–20. doi: 10.1016/0042-6822(87)90134-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 105.Deregt D., Gifford G.A., Ijaz M.K., Watts T.C., Gilchrist J.E., Haines D.M., Babiuk L.A. Monoclonal antibodies to bovine coronavirus glycoproteins E2 and E3: Demonstration of in vivo virus-neutralizing activity. J. Gen. Virol. 1989;70:993–8. doi: 10.1099/0022-1317-70-4-993. [DOI] [PubMed] [Google Scholar]
  • 106.Kasai H., Morita E., Hatakeyama K., Sugiyama K. Characterization of haemagglutinin-esterase protein (HE) of murine corona virus DVIM by monoclonal antibodies. Arch. Virol. 1998;143:1941–8. doi: 10.1007/s007050050431. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 107.Williams R.K., Jiang G.S., Holmes K.V. Receptor for mouse hepatitis virus is a member of the carcinoembryonic antigen family of glycoproteins. Proc Natl Acad Sci U S A. 1991;88:5533–6. doi: 10.1073/pnas.88.13.5533. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 108.Dveksler G.S., Pensiero M.N., Cardellichio C.B., Williams R.K., Jiang G.S., Holmes K.V., Dieffenbach CW. Cloning of the mouse hepatitis virus (MHV) receptor: Expression in human and hamster cell lines confers susceptibility to MHV. J. Virol. 1991;65:6881–91. doi: 10.1128/jvi.65.12.6881-6891.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 109.Dveksler G.S., Pensiero M.N., Dieffenbach C.W., Cardellichio C.B., Basile A.A., Elia P.E., Holmes K.V. Mouse hepatitis virus strain A59 and blocking antireceptor monoclonal antibody bind to the N-terminal domain of cellular receptor. Proc Natl Acad Sci U S A. 1993;90:1716–20. doi: 10.1073/pnas.90.5.1716. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 110.Dveksler G.S., Dieffenbach C.W., Cardellichio C.B., McCuaig K., Pensiero M.N., Jiang G.S., Beauchemin N., Holmes K.V. Several members of the mouse carcinoembryonic antigen-related glycoprotein family are functional receptors for the coronavirus mouse hepatitis virus-A59. J. Virol. 1993;67:1–8. doi: 10.1128/jvi.67.1.1-8.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 111.Yokomori K., Lai M.M. Mouse hepatitis virus utilizes two carcinoembryonic antigens as alternative receptors. J. Virol. 1992;66:6194–9. doi: 10.1128/jvi.66.10.6194-6199.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 112.Gagneten S., Gout O., Dubois-Dalcq M., Rottier P., Rossen J., Holmes K.V. Interaction of mouse hepatitis virus (MHV) spike glycoprotein with receptor glycoprotein MHVR is required for infection with an MHV strain that expresses the hemagglutinin-esterase glycoprotein. J. Virol. 1995;69:889–95. doi: 10.1128/jvi.69.2.889-895.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 113.Lavi E., Gilden D.H., Highkin M.K., Weiss S.R. The organ tropism of mouse hepatitis virus A59 in mice is dependent on dose and route of inoculation. Lab. Anim. Sci. 1986;36:130–5. [PubMed] [Google Scholar]
  • 114.Lissenberg A., Vrolijk M.M., van Vliet A.L.W., Langereis M.A., de Groot-Mijnes J.D.F., Rottier P.J.M., de Groot R.J. Luxury at a cost? Recombinant mouse hepatitis viruses expressing the accessory hemagglutinin esterase protein display reduced fitness in vitro. J. Virol. 2005;79:15054–63. doi: 10.1128/JVI.79.24.15054-15063.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 115.Taguchi F., Massa P.T., ter Meulen V. Characterization of a variant virus isolated from neural cell culture after infection of mouse coronavirus JHMV. Virology. 1986;155:267–70. doi: 10.1016/0042-6822(86)90187-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 116.Kazi L., Lissenberg A., Watson R., de Groot R.J., Weiss S.R. Expression of hemagglutinin esterase protein from recombinant mouse hepatitis virus enhances neurovirulence. J. Virol. 2005;79:15064–73. doi: 10.1128/JVI.79.24.15064-15073.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 117.Schultze B., Zimmer G., Herrler G. Virus entry into a polarized epithelial cell line (MDCK): Similarities and dissimilarities between influenza C virus and bovine coronavirus. J. Gen. Virol. 1996;77:2507–14. doi: 10.1099/0022-1317-77-10-2507. [DOI] [PubMed] [Google Scholar]
  • 118.Popova R., Zhang X. The spike but not the hemagglutinin/esterase protein of bovine coronavirus is necessary and sufficient for viral infection. Virology. 2002;294:222–36. doi: 10.1006/viro.2001.1307. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Glycoconjugate Journal are provided here courtesy of Nature Publishing Group

RESOURCES