Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 2007 May 18;20(1):31–53. doi: 10.1007/s10884-007-9075-0

The Impact of Media on the Control of Infectious Diseases

Jingan Cui 1, Yonghong Sun 2, Huaiping Zhu 3,
PMCID: PMC7088267  PMID: 32214759

Abstract

We develop a three dimensional compartmental model to investigate the impact of media coverage to the spread and control of infectious diseases (such as SARS) in a given region/area. Stability analysis of the model shows that the disease-free equilibrium is globally-asymptotically stable if a certain threshold quantity, the basic reproduction number (Inline graphic), is less than unity. On the other hand, if Inline graphic , it is shown that a unique endemic equilibrium appears and a Hopf bifurcation can occur which causes oscillatory phenomena. The model may have up to three positive equilibria. Numerical simulations suggest that when Inline graphic and the media impact is stronger enough, the model exhibits multiple positive equilibria which poses challenge to the prediction and control of the outbreaks of infectious diseases.

Keywords: Infectious disease, SEI model, media impact, Hopf bifurcation, multiple outbreaks

Footnotes

Research supported by the NNSF of China (10471066).

Research supported by NSERC, MITACS and CFI/OIT of Canada.

References

  • 1.Brauer F., Castillo-Chavez C. Mathematical Models in Population Biology and Epidemics. New York: Springer-Verlag; 2000. [Google Scholar]
  • 2.Busenberg S., Cooke K. Vertically Transmitted Diseases. New York: Springer-Verlag; 1993. [Google Scholar]
  • 3.Capasso V. Mathematical Structure of Epidemic System, Lecture Note in Biomathematics, Vol. 97. Berlin: Springer; 1993. [Google Scholar]
  • 4.Capasso V., Serio G. A generalization of the Kermack-McKendrick deterministic epidemic model. Math. Biosci. 1978;42:43. doi: 10.1016/0025-5564(78)90006-8. [DOI] [Google Scholar]
  • 5.Diekmann O., Heesterbeek J.A.P. Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis and Interpretation. New York: Wiley; 2000. [Google Scholar]
  • 6.Dumortier F., Roussarie R., Sotomayor J. Generic 3-parameter families of vector fields on the plane, unfolding a singularity with nilpotent linear part. The cusp case of codimension 3. Ergodic Theory Dynamical Systems. 1987;7(3):375–413. [Google Scholar]
  • 7.Health Canada: http://www.hc-sc.gc.ca/pphb-dgspsp/sars-sras/prof-e.html
  • 8.Hethcote H.W. The mathematics of infectious diseases. SIAM Revi. 2000;42:599–653. doi: 10.1137/S0036144500371907. [DOI] [Google Scholar]
  • 9.Levin S.A., Hallam T.G., Gross L.J. Applied Mathematical Ecology. New York: Springer; 1989. [Google Scholar]
  • 10.Liu W.M., Hethcote H.W., Levin S.A. Dynamical behavior of epidemiological models with nonlinear incidence rates. J. Math. Biol. 1987;25:359. doi: 10.1007/BF00277162. [DOI] [PubMed] [Google Scholar]
  • 11.Liu W.M., Levin S.A., Iwasa Y. Influence of nonlinear incidence rates upon the behavior of SIRS epidemiological models. J. Math. Biol. 1986;23:187. doi: 10.1007/BF00276956. [DOI] [PubMed] [Google Scholar]
  • 12.Liu, R., Wu, J., and Zhu, H. (2005). Media/Psychological Impact on Multiple Outbreaks of Emerging Infectious Diseases, preprint
  • 13.Murray J.D. Mathematical Biology. Berlin: Springer-Verlag; 1998. [Google Scholar]
  • 14.Ruan S., Wang W. Dynamical behavior of an epidemic model with a nonlinear incidence rate. J. Diff. Equs. 2003;188:135. doi: 10.1016/S0022-0396(02)00089-X. [DOI] [Google Scholar]
  • 15.SARS EXPRESS: http://www.syhao.com/sars/20030623.htm
  • 16.Shen Z., et al. Superspreading SARS events, Beijing, 2003. Emerg. Infect. Dis. 2004;10(2):256–260. doi: 10.3201/eid1002.030732. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.van den Driessche P., Watmough J. Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math. Biosci. 2002;180:29–48. doi: 10.1016/S0025-5564(02)00108-6. [DOI] [PubMed] [Google Scholar]
  • 18.Wang W., Ruan S. Simulating SARS outbreak in Beijing with limit data. J. Theor. Biol. 2004;227:369. doi: 10.1016/j.jtbi.2003.11.014. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.WHO. Epidemic curves: Serve Acute Respiratory Syndrome (SARS) http://www.who.int/csr/sars/epicurve/epiindex/en/print.html
  • 20.Yorke J.A., London W.P. Recurrent outbreaks of measles, chickenpox and mumps II. Am. J. Epidemiol. 1973;98:469. doi: 10.1093/oxfordjournals.aje.a121576. [DOI] [PubMed] [Google Scholar]
  • 21.Zhu H., Campbell S.A., Wolkowicz G.S. Bifurcation analysis of a predator-prey system with nonmonotonic function response. SIAM J. Appl. Math. 2002;63(2):636–682. [Google Scholar]

Articles from Journal of Dynamics and Differential Equations are provided here courtesy of Nature Publishing Group

RESOURCES