Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 1992;235(2):325–332. doi: 10.1007/BF00279377

DNA sequences required for translational frameshifting in production of the transposase encoded by IS 1

Yasuhiko Sekine 1, Eiichi Ohtsubo 1,
PMCID: PMC7088269  PMID: 1334530

Summary

The transposase encoded by insertion sequence IS 1 is produced from two out-of-phase reading frames (insA and B′-insB) by translational frameshifting, which occurs within a run of six adenines in the −1 direction. To determine the sequence essential for frameshifting, substitution mutations were introduced within the region containing the run of adenines and were examined for their effects on frameshifting. Substitutions at each of three (2nd, 3rd and 4th) adenine residues in the run, which are recognized by tRNALys reading insA, caused serious defects in frameshifting, showing that the three adenine residues are essential for frameshifting. The effects of substitution mutations introduced in the region flanking the run of adenines and in the secondary structures located downstream were, however, small, indicating that such a region and structures are not essential for frameshifting. Deletion of a region containing the termination codon of insA caused a decrease in β-galactosidase activity specified by the lacZ fusion plasmid in frame with B′-insB. Exchange of the wild-type termination codon of insA for a different one or introduction of an additional termination codon in the region upstream of the native termination codon caused an increase in β-galactosidase activity, indicating that the termination codon in insA affects the efficiency of frameshifting.

Key words: Adenine run, Cointegration, Secondary structure of mRNA, Termination codon, tRNALys

References

  1. Atkins JF, Weiss RB, Gesteland RF. Ribosome gymnastics — Degree of difficulty 9.5, style 10.0. Cell. 1990;62:413–423. doi: 10.1016/0092-8674(90)90007-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Brierley I, Digard P, Inglis SC. Characterization of an efficient coronavirus ribosomal frameshifting signal: requirement for an RNA pseudoknot. Cell. 1989;57:537–547. doi: 10.1016/0092-8674(89)90124-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Casadaban MJ, Cohen SN. Analysis of gene control signals by DNA fusion and cloning in Escherichia coli. J Mol Biol. 1980;138:179–207. doi: 10.1016/0022-2836(80)90283-1. [DOI] [PubMed] [Google Scholar]
  4. Chakraburtty K, Steinschneider A, Case RV, Mehler AH. Primary structure of tRNALys of E. coli B. Nucleic Acids Res. 1975;2:2069–2075. doi: 10.1093/nar/2.11.2069. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dinman JD, Icho T, Wickner RB. A −1 ribosomal frameshift in a double-stranded RNA virus of yeast forms a gag-pol fusion protein. Proc Natl Acad Sci USA. 1991;88:174–178. doi: 10.1073/pnas.88.1.174. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Flower AM, McHenry CS. The γ subunit of DNA polymerase III holoenzyme of Escherichia coli is produced by ribosomal frameshifting. Proc Natl Acad Sci USA. 1990;87:3713–3717. doi: 10.1073/pnas.87.10.3713. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hashimoto-Gotoh T, Sekiguchi M. Mutations to temperature sensitivity in R plasmid pSC101. J Bacteriol. 1977;131:405–412. doi: 10.1128/jb.131.2.405-412.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hübner P, Iida S, Arber W. A transcriptional terminator sequence in the prokaryotic transposable element IS1. Mol Gen Genet. 1987;206:485–490. doi: 10.1007/BF00428889. [DOI] [PubMed] [Google Scholar]
  9. Jacks T, Townsley K, Varmus HE, Majors J. Two efficient ribosomal frameshifting events are required for synthesis of mouse mammary virus gag-related polyprotein. Proc Natl Acad Sci USA. 1987;82:2829–2833. doi: 10.1073/pnas.84.12.4298. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Jacks T, Madhani HD, Masiarz FR, Varmus HE. Signals for ribosomal frameshifting in the Rous sarcoma virus gag-pol region. Cell. 1988;55:447–458. doi: 10.1016/0092-8674(88)90031-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kunkel TA, Roberts JD, Zakour RA. Rapid and efficient site-specific mutagenesis without phenotypic selection. Methods Enzymol. 1987;154:367–382. doi: 10.1016/0076-6879(87)54085-x. [DOI] [PubMed] [Google Scholar]
  12. Machida Y, Machida C, Ohtsubo E. A novel type of transposon generated by insertion element IS102 present in a pSC101 derivative. Cell. 1982;30:29–36. doi: 10.1016/0092-8674(82)90008-3. [DOI] [PubMed] [Google Scholar]
  13. Maniatis T, Fritsch EF, Sambrook J. Molecular Cloning: A laboratory manual. Cold Spring Harbor, New York: Cold Spring Harbor Laboratory Press; 1982. [Google Scholar]
  14. Messing J. New M13 vectors for cloning. Methods Enzymol. 1983;101:20–78. doi: 10.1016/0076-6879(83)01005-8. [DOI] [PubMed] [Google Scholar]
  15. Ohtsubo E, Zenilman M, Ohtsubo H, McCormick M, Machida C, Machida Y. Mechanism of insertion and cointegration mediated by IS1 and Tn3. Cold Spring Harbor Symp Quant Biol. 1981;45:283–295. doi: 10.1101/sqb.1981.045.01.041. [DOI] [PubMed] [Google Scholar]
  16. Ohtsubo H, Obtsubo E. Nucleotide sequence of an insertion element, IS1. Proc Natl Acad Sci USA. 1978;73:2316–2320. doi: 10.1073/pnas.75.2.615. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Oppenheim D, Yanofsky C. Translational coupling during expression of the tryptophan operon of Escherichia coli. Genetics. 1980;95:785–795. doi: 10.1093/genetics/95.4.785. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA. 1977;74:5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Scheit KH, Faerber P. The effects of thioketo substitution upon uracil-adenine interactions in polyribonucleotides. Eur J Biochem. 1975;50:549–555. doi: 10.1111/j.1432-1033.1975.tb09895.x. [DOI] [PubMed] [Google Scholar]
  20. Sekine Y, Ohtsubo E. Frameshifting is required for production of the transposase encoded by insertion sequence 1. Proc Natl Acad Sci USA. 1989;86:4609–4613. doi: 10.1073/pnas.86.12.4609. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Sekine Y, Ohtsubo E. Translational frameshifting in IS elements and other genetic systems. In: Kimura M, Takahata N, editors. New Aspects of The Genetics of Molecular Evolution. Tokyo: Berlin: Japan Scientific Societies Press; Springer-Verlag; 1991. pp. 243–261. [Google Scholar]
  22. Sekine Y, Nagasawa H, Ohtsubo E. Identification of the site of translational frameshifting required for production of the transposase encoded by insertion sequence IS1. Mol Gen Genet. 1992;235:317–324. doi: 10.1007/BF00279376. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Tinoco I, Jr, Borer PN, Dengler B, Levine MD, Uhlenbeck OC, Crothers DM, Gralla J. Improved estimation of secondary structure in ribonucleic acids. Nature New Biol. 1973;246:40–41. doi: 10.1038/newbio246040a0. [DOI] [PubMed] [Google Scholar]
  24. Tsuchihashi Z, Kornberg A. Translational frameshifting generates the γ subunit of DNA polymerase III holoenzyme. Proc Natl Acad Sci USA. 1990;87:2516–2520. doi: 10.1073/pnas.87.7.2516. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Vieira J, Messing J. Production of single stranded plasmid DNA. Methods Enzymol. 1987;153:3–11. doi: 10.1016/0076-6879(87)53044-0. [DOI] [PubMed] [Google Scholar]
  26. Vögele K, Schwartz E, Welz C, Schiltz E, Rak B. High-level ribosomal frameshifting directs the synthesis of IS150 gene products. Nucleic Acids Res. 1991;19:4377–4385. doi: 10.1093/nar/19.16.4377. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Weiss RB. Molecular model of ribosome frameshifting. Proc Nail Acad Sci USA. 1984;81:5797–5801. doi: 10.1073/pnas.81.18.5797. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Weiss RB, Dunn DM, Atkins JF, Gesteland RF. Slippery runs, shifty stops, backward steps, and forward hops: −2, −1, +1, +2, +5, and +6 ribosomal frameshifting. Cold Spring Harbor Symp Quant Biol. 1987;52:687–693. doi: 10.1101/sqb.1987.052.01.078. [DOI] [PubMed] [Google Scholar]
  29. Yokoyama S, Watanabe T, Murao K, Ishikura H, Yamaizumi Z, Nishimura S, Miyazawa T. Molecular mechanism of codon recognition by tRNA species with modified uridine in the first position of the anticodon. Proc Nail Acad Sci USA. 1985;82:4905–4909. doi: 10.1073/pnas.82.15.4905. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Yoshioka Y, Ohtsubo H, Ohtsubo E. Repressor gene finO in plasmids R100 and F: Constitutive transfer of plasmid F is caused by insertion of IS3 into F finO. J Bacteriol. 1987;169:619–623. doi: 10.1128/jb.169.2.619-623.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Molecular & General Genetics are provided here courtesy of Nature Publishing Group

RESOURCES