Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 1984;29(11):1028–1035. doi: 10.1007/BF01311255

Pathogenesis of rotavirus-induced diarrhea

Preliminary studies in miniature swine piglet

David Y Graham 1,2,, Jeffrey W Sackman 1,2, Mary K Estes 1,2
PMCID: PMC7088308  PMID: 6489082

Abstract

The pathogenesis of diarrhea caused by rotavirus infection was studied in miniature swine piglets. The animals were inoculated orally with 2×107 plaque-forming units of porcine rotavirus (OSU strain). During the height of diarrhea, intestinal function was investigated byin vivo perfusion of a 30-cm segment of proximal jejunum and a 30-cm segment of distal ileum. Absorption of Na+ and water decreased and 3-O-methylglucose transport was markedly reduced,P<0.01 compared to control animals. Mucosal lactase and sucrase levels were depressed in both the jejunum and ileum,P<0.001. Na+, K+-ATPase activity was significantly depressed only in the ileum,P<0.001. These changes were associated with a marked reduction in villous height, suggesting that the diarrhea could be an osmotic diarrhea due to nutrient (carbohydrate) malabsorption. Fresh stool samples were obtained and analyzed immediately for NA+,K+, osmolarity, glucose, and lactose; the osmotic gap was also determined. Stool osmolarity continually increased from 248±20 mosm/liter prior to inoculation to 348±20 mosm/liter at 75±1 hr postinoculation (P<0.005); the majority of the fecal osmotic gap could be accounted for by the amount of lactose present in the stools. Stool sodium increased from 34±6 mM prior to inoculation to a maximum of 65±4 mM at 53±1 hr postinoculation,P<0.001. There was no significant change in potassium concentration. The present investigation suggests that rotavirus-induced diarrhea is due to virus destruction of enterocytes lining the intestinal villi, thus reducing the mucosal surface area and important digestive enzymes. This destruction leads to an osmotic diarrhea due to nutrient (primarily carbohydrate) malabsorption. A possible contributing role of unopposed secretion from the crypt cannot be excluded from this study.

Keywords: Lactase, Miniature Swine, Villous Height, Fresh Stool, Osmotic Diarrhea

Footnotes

This work was supported by the Veterans Administration, and by grants from the USDA-ARS Children's Nutrition Research Center, Baylor College of Medicine, by a grant R808333-01 from the Environmental Protection Agency, and from Vicks Health Care Division of Richardson-Vicks, Inc. (Mount Vernon, New York).

References

  • 1.Snyder JD, Merson MH. The magnitude of the global problem of acute diarrhoeal disease: A review of active surveillance data. Bull WHO. 1982;60:605–613. [PMC free article] [PubMed] [Google Scholar]
  • 2.Estes MK, Graham DY. Epidemic viral gastroenteritis. Am J Med. 1979;66:1001–1007. doi: 10.1016/0002-9343(79)90457-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Woode GN, Smith C, Dennis MJ. Intestinal damage in rotavirus infected calves assessed byd-xylose malabsorption. Vet Rec. 1978;102:340–341. doi: 10.1136/vr.102.15.340-a. [DOI] [PubMed] [Google Scholar]
  • 4.Pearson GR, McNulty MS, Logan EF. Pathological changes in the small intestine of neonatal calves naturally infected with reo-like virus (rotavirus) Vet Rec. 1978;102:454–458. doi: 10.1136/vr.102.21.454. [DOI] [PubMed] [Google Scholar]
  • 5.Dubourguier HC, Mandard O, Contrepois M, Gouet P. Light and electronic microscopic studies of the changes in the intestinal mucosa of gnotobiotic calves infected with a wild rotavirus. Ann Virol. 1981;132E:217–227. [Google Scholar]
  • 6.Theil KW, Bohl EH, Cross RF, Kohler EM, Agnes AG. Pathogenesis of porcine rotaviral infection in experimentally inoculated gnotobiotic pigs. Am J Vet Res. 1978;39:213–220. [PubMed] [Google Scholar]
  • 7.Coelho KIR, Bryden AS, Hall C, Flewett TH. Pathology of rotavirus infection in suckling mice: A study of conventional histology, immunofluorescence ultrathin sections, and scanning electron microscopy. Ultrastruct Pathol. 1981;2:59–80. doi: 10.3109/01913128109031504. [DOI] [PubMed] [Google Scholar]
  • 8.McAdaragh JP, Bergeland ME, Meyer RC, Johnshoy MW, Stotz IJ, Benfield DA, Hammer R. Pathogenesis of rotaviral enteritis in gnotobiotic pigs: A microscopic study. Am J Vet Res. 1980;41:1572–1581. [PubMed] [Google Scholar]
  • 9.Crouch CF, Woode GN. Serial studies of virus multiplication and intestinal damage in gnotobiotic piglets infected with rotavirus. J Med Microbiol. 1978;11:325–334. doi: 10.1099/00222615-11-3-325. [DOI] [PubMed] [Google Scholar]
  • 10.Snodgrass DR, Ferguson A, Allan F, Angus KW, Mitchell B. Small intestinal morphology and epithelial cell kinetics in lamb rotavirus infections. Gastroenterology. 1979;76:477–481. [PubMed] [Google Scholar]
  • 11.Davidson GP, Barnes GL. Structural and functional abnormalities of the small intestine in infants and young children with rotavirus enteritis. Acta Paediatr Scand. 1979;68:181–186. doi: 10.1111/j.1651-2227.1979.tb04986.x. [DOI] [PubMed] [Google Scholar]
  • 12.Butler DG, Gall DG, Kelly MH, Hamilton JR. Mechanisms responsible for diarrhea in an acute viral enteritis in piglets. J Clin Invest. 1974;53:1335–1342. doi: 10.1172/JCI107681. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Shepherd RW, Gall DG, Butler DG, Hamilton JR. Determinants of diarrhea in viral enteritis. Gastroenterology. 1979;76:20–24. doi: 10.1016/S0016-5085(79)80122-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Kelly M, Butler DG, Hamilton JR. Transmissible gastroenteritis in piglets: A model of infantile viral diarrhea. Pediatr. 1972;80:925–931. doi: 10.1016/S0022-3476(72)80003-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Kerzner V, Kelly MH, Gall DG, Butler DG, Hamilton JR. Transmissible gastroenteritis: Sodium transport and the intestinal epithelium during the course of viral enteritis. Gastroenterology. 1977;72:457–461. [PubMed] [Google Scholar]
  • 16.McClung HJ, Butler DG, Kerzner B, Gall DG, Hamilton JR. Transmissible gastroenteritis. Mucosal ion transport in acute viral enteritis. Gastroenterology. 1976;70:1091–1095. doi: 10.1016/S0016-5085(76)80317-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Shepherd RW, Butler DG, Cutz E, Gall DG, Hamilton JR. The mucosal lesions in viral enteritis. Gastroenterology. 1976;76:770–777. doi: 10.1016/S0016-5085(79)80177-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Pensaert M, Haelterman EO, Burnstein T. Transmissible gastroenteritis of swine: Virus-intestinal cell interactions. Arch Gesamte Virusforsch. 1970;31:321–334. doi: 10.1007/BF01253767. [DOI] [PubMed] [Google Scholar]
  • 19.Hooper BE, Haelterman EO. Concepts of pathogenesis and passive immunity in transmissible gastroenteritis of swine. J Am Vet Med Assoc. 1966;149:1580–1586. [Google Scholar]
  • 20.Telch J, Shepherd RW, Butler DG, Perdue M, Hamilton JR, Gall DG. Intestinal glucose transport in acute viral enteritis in piglets. Clin Sci. 1981;61:29–34. doi: 10.1042/cs0610029. [DOI] [PubMed] [Google Scholar]
  • 21.Davidson GP, Gall DG, Petric M, Butler DG, Hamilton JR. Human rotavirus enteritis induced in conventional piglets. J Clin Invest. 1977;60:1402–1409. doi: 10.1172/JCI108901. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Estes MK, Graham DY. Identification of rotaviruses of different origins by the plaque-reduction test. Am J Vet Res. 1980;41:151–152. [PubMed] [Google Scholar]
  • 23.Dahlqvist A. Disaccharidases. In: Bergmeyer HU, editor. Methods of Enzymatic Analysis, Vol 2. New York: Academic Press; 1974. pp. 916–922. [Google Scholar]
  • 24.Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951;193:265–275. [PubMed] [Google Scholar]
  • 25.Hokin LE, Dahl JL, Deupree JD, Dixon JF, Hackney JF, Perdue JF. Studies on characterization of Na+−K+ transport adenosine triphosphate. J Biol Chem. 1973;248:2593–2605. [PubMed] [Google Scholar]
  • 26.Read NW. Diarrhoea: The failure of colonic salvage. Lancet. 1982;2:481–483. doi: 10.1016/s0140-6736(82)90504-9. [DOI] [PubMed] [Google Scholar]
  • 27.Launiala K. The mechanism of diarrhoea in congenital disaccharide malabsorption. Acta Paediatr Scand. 1968;57:425–432. doi: 10.1111/j.1651-2227.1968.tb07315.x. [DOI] [PubMed] [Google Scholar]
  • 28.Launiala K. The effect of unabsorbed sucrose and mannitol on the small intestinal flow rate and mean transit time. Scand J Gastroenterol. 1968;3:665–671. [PubMed] [Google Scholar]
  • 29.Tallett S, Mackenzie C, Middleton P, Kerzner B, Hamilton R. Clinical, laboratory, and epidemiologic features of a viral gastroenteritis in infants and children. Pediatrics. 1977;70:217–222. [PubMed] [Google Scholar]
  • 30.Maki M. A prospective clinical study of rotavirus diarrhoea in young children. Acta Paediatr Scand. 1981;70:107–113. doi: 10.1111/j.1651-2227.1981.tb07181.x. [DOI] [PubMed] [Google Scholar]
  • 31.Kumar V, Chandrasekaran R, Bhaskar R. Carbohydrate intolerance associated with acute gastroenteritis. A prospective study of 90 well-nourished Indian infants. Clin Pediatr. 1977;16:1123–1127. doi: 10.1177/000992287701601208. [DOI] [PubMed] [Google Scholar]
  • 32.Hyams JS, Krause PJ, Gleason PA. Lactose malabsorption following rotavirus infection in young children. J Pediatr. 1981;99:916–918. doi: 10.1016/s0022-3476(81)80020-0. [DOI] [PubMed] [Google Scholar]
  • 33.Chatterjee A, Mahalanabis D, Jalan KN, Maitra TK, Agarwal SK, Dutta B, Khatua SP, Bagchi DK. Oral rehydration in infantile diarrhoea. Controlled trial of a low sodium glucose electrolyte solution. Arch Dis Child. 1978;53:284–289. doi: 10.1136/adc.53.4.284. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.Cameron DJS, Bishop RF, Davidson GP, Townley RRW, Holmes IH, Ruck BJ. New virus associated with diarrhoea in neonates. Med J Aust. 1976;1:85–86. [PubMed] [Google Scholar]
  • 35.Shepherd RW, Truslow S, Walker-Smith JA, Bird R, Cutting W, Darnell R, Barker CM. Infantile gastroenteritis: A clinical study of reovirus-like agent infection. Lancet. 1975;2:1082–1084. doi: 10.1016/s0140-6736(75)90446-8. [DOI] [PubMed] [Google Scholar]
  • 36.Santosham M, Daum RS, Dillman L, Rodriguez JL, Luque S, Russell R, Kourany M, Ryder RW, Bartlett AV, Rosenberg A, Benenson AS, Sack RB. Oral rehydration therapy of infantile diarrhea. A controlled study of well-nourished children hospitalized in the United States and Panama. N Engl J Med. 1983;306:1070–1076. doi: 10.1056/NEJM198205063061802. [DOI] [PubMed] [Google Scholar]
  • 37.Sack DA, Chowdhury AMAK, Eusof A, Ali MA, Merson MH, Islam S, Black RE, Brown KH. Oral hydration in rotavirus diarrhoea: A double blind comparison of sucrose with glucose electrolyte solution. Lancet. 1978;2:280–283. doi: 10.1016/s0140-6736(78)91687-2. [DOI] [PubMed] [Google Scholar]
  • 38.Nalin DR, Levin MM, Mata L, DeCespedes C, Vargas W, Lizano C, Loria A, Simhon A, Mohs E. Comparison of sucrose with glucose in oral therapy of infant diarrhoea. Lancet. 1978;2:277–279. doi: 10.1016/s0140-6736(78)91686-0. [DOI] [PubMed] [Google Scholar]
  • 39.Black RE, Merson MH, Taylor PR, Yoken RH, Sack DA. Glucose vs sucrose in oral rehydration solutions for infants and young children with rotavirus-associated diarrhea. Pediatrics. 1981;67:79–83. [PubMed] [Google Scholar]
  • 40.Kjellman B, Ronge E. Oral solutions for gastroenteritis-optimal glucose concentrations. Arch Dis Child. 1982;57:313–315. doi: 10.1136/adc.57.4.313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41.Sack DA, Rhoads M, Molla A, Molla AM, Wahed MA. Carbohydrate malabsorption in infants with rotavirus diarrhea. Am J Clin Nutr. 1982;36:1112–1118. doi: 10.1093/ajcn/36.6.1112. [DOI] [PubMed] [Google Scholar]
  • 42.Molla A, Molla AM, Rahim A, Sarker SA, Mozaffar Z, Rahaman M. Intake and absorption of nutrients in children with cholera and rotavirus infection during acute diarrhea and after recovery. Nutr Res. 1982;2:233–242. [Google Scholar]
  • 43.Mavromichalis J, Evans N, McNeish AS, Bryden AS, Davies HA, Flewett RH. Intestinal damage in rotavirus and adenovirus gastroenteritis assessed byd-xylose malabsorption. Arch Dis Child. 1978;52:589–591. doi: 10.1136/adc.52.7.589. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 44.Carpenter CCJ. Clinical and pathophysiologic features of diarrhea caused by Vibrio cholerae and Escherichia coli. In: Field M, Fordtran JS, Schultz SG, editors. Secretory Diarrhea. Bethesda: American Physiological Society; 1980. pp. 67–83. [Google Scholar]
  • 45.Hirschhorn N. Oral rehydration therapy for diarrhea in children—a basic primer. Nutr Rev. 1982;40:97–104. doi: 10.1111/j.1753-4887.1982.tb05279.x. [DOI] [PubMed] [Google Scholar]
  • 46.Nalin DR, Cash RA, Rahman M, Yunus MD. Effect of glycine and glucose on sodium and water absorption in patients with cholera. Gut. 1970;11:768–772. doi: 10.1136/gut.11.9.768. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 47.Bywater RJ, Woode GN. Oral fluid replacement by a glucose glycine electrolyte formulation inE. coli and rotavirus diarrhoea in pigs. Vet Rec. 1980;106:75–78. doi: 10.1136/vr.106.4.75. [DOI] [PubMed] [Google Scholar]

Articles from Digestive Diseases and Sciences are provided here courtesy of Nature Publishing Group

RESOURCES