Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 1991;227(2):306–317. doi: 10.1007/BF00259684

Mitochondrial mutations restricting spontaneous translational frameshift suppression in the yeast Saccharomyces cerevisiae

Hajime Sakai 1,, Renate Stiess 1, Brigitte Weiss-Brummer 1
PMCID: PMC7088400  PMID: 1648170

Summary

The +1 frameshift mutation, M5631, which is located in the gene (oxi1) for cytochrome c oxidase II (COXII) of the yeast mitochondrial genome, is suppressed spontaneously to a remarkably high extent (20%–30%). The full-length wild-type COXII produced as a result of suppression allows the mutant strain to grow with a “leaky” phenotype on non-fermentable medium. In order to elucidate the factors and interactions involved in this translational suppression, the strain with the frameshift mutation was mutated by MnCl2 treatment and a large number of mutants showing restriction of the suppression were isolated. Of 20 mutants exhibiting a strong, restricted, respiration-deficient (RD) phenotype, 6 were identified as having mutations in the mitochondrial genome. Furthermore, genetic analyses mapped one mutation to the vicinity of the gene for tRNAPro and two others to a region of the tRNA cluster where two-thirds of all mitochondrial tRNA genes are encoded. The degree of restriction of the spontaneous frameshift suppression was characterized at the translational level by in vivo 35S-labeling of the mitochondrial translational products and immunoblotting. These results showed that in some of these mutant strains the frameshift suppression product is synthesized to the same extent as in the leaky parent strain. It is suggested that more than one +1 frame-shifted product is made as a result of suppression in these strains: one is as functional as the wild-type COXII, the other(s) is (are) non-functional and prevent leaky growth on non-fermentable medium. A possible mechanism for this heterogenous frameshift suppression is discussed.

Key words: Yeast, Mitochondria, Frameshift, Suppression, Restriction

References

  1. Atkins JF, Gesteland RF, Reid BR, Anderson CW. Normal tRNAs promote ribosomal frameshifting. Cell. 1979;18:1119–1131. doi: 10.1016/0092-8674(79)90225-3. [DOI] [PubMed] [Google Scholar]
  2. Bairoch A (1988) SWISS-PROT, protein sequence data bank: release 9.0, Nov. 1988. Medical Biochemistry Department, University of Geneva
  3. Brierley I, Boursnell MEG, Binns MM, Bilimoria B, Blok VC, Brown TDK, Inglis SC. An efficient ribosomal frameshifting signal in the polymerase-encoding region of the coronavirus IBV. EMBO J. 1987;6:3779–3785. doi: 10.1002/j.1460-2075.1987.tb02713.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brierley I, Digard P, Inglis SC. Characterization of an efficient coronavirus ribosomal frameshifting signal: Requirement of an RNA pseudoknot. Cell. 1989;57:537–547. doi: 10.1016/0092-8674(89)90124-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Capaldi RA, Malatesta F, Darley-Usmar VM. Structure of cytochrome c oxidase. Biochim Biophys Acta. 1983;726:135–148. doi: 10.1016/0304-4173(83)90003-4. [DOI] [PubMed] [Google Scholar]
  6. Craigen WJ, Cook RG, Tate WP, Caskey CT. Bacterial peptide chain release factors: conserved primary structure and possible frameshift regulation of release factor 2. Proc Natl Acad Sci USA. 1985;82:3616–3620. doi: 10.1073/pnas.82.11.3616. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Curran JF, Yarns M. Rates of aminoacyl-tRNA selection at 29 sense codons in vivo. J Mol Biol. 1989;209:65–77. doi: 10.1016/0022-2836(89)90170-8. [DOI] [PubMed] [Google Scholar]
  8. de Zamaroczy M, Bernardi G. The primary structure of the mitochondrial genome of Saccharomyces cerevisiae — a review. Gene. 1986;47:155–177. doi: 10.1016/0378-1119(86)90060-0. [DOI] [PubMed] [Google Scholar]
  9. Dujardin G, Pajot P, Groudinsky O, Slonimski PP. Long range control circuits within mitochondria and between nucleus and mitochondria. Mol Gen Genet. 1980;179:469–482. doi: 10.1007/BF00271736. [DOI] [PubMed] [Google Scholar]
  10. Dujon B. Mitochondrial genetics and functions. In: Strathern J, Jones EW, Broach JR, editors. The molecular biology of the yeast Saccharomyces cerevisiae. New York: Cold Spring Harbor Laboratory Press; 1981. pp. 505–635. [Google Scholar]
  11. Fox TD. Genetic and physical analysis of the mitochondrial gene for subunit II of yeast cytochrome c oxidase. J Mol Biol. 1979;130:63–82. doi: 10.1016/0022-2836(79)90552-7. [DOI] [PubMed] [Google Scholar]
  12. Fox TD, Weiss-Brummer B. Leaky +1 and −1 frameshift mutations at the same site in a yeast mitochondrial gene. Nature. 1980;288:60–63. doi: 10.1038/288060a0. [DOI] [PubMed] [Google Scholar]
  13. Haid A, Suissa M. Immunochemical identification of membrane proteins after sodium dodecylsulfate-polyacrylamide gel electrophoresis. Methods Enzymol. 1983;96:192–205. doi: 10.1016/s0076-6879(83)96017-2. [DOI] [PubMed] [Google Scholar]
  14. Haid S, Schweyen RJ, Bechmann H, Kaudewitz F, Solioz M, Schatz G. The mitochondrial COB region in yeast codes for apocytochrome b and is mosaic. Eur J Chem. 1979;94:451–464. doi: 10.1111/j.1432-1033.1979.tb12913.x. [DOI] [PubMed] [Google Scholar]
  15. Hudspeth MES, Shumard DS, Tatti KM, Grossman LI. Rapid purification of yeast mitochondrial DNA in high yield. Biochim Biophys Acta. 1980;610:221–228. doi: 10.1016/0005-2787(80)90003-9. [DOI] [PubMed] [Google Scholar]
  16. Hughes D, Atkins JF, Thompson S. Mutants of elongation factor Tu promote ribosomal frameshifting and nonsense readthrough. EMBO J. 1987;6:4235–4239. doi: 10.1002/j.1460-2075.1987.tb02772.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hüttenhofer A, Sakai H, Weiss-Brummer B. Site-specific AT-cluster insertions in the mitochondrial 15S rRNA gene of the yeast S. cerevisiae. Nucleic Acids Res. 1988;16:8665–8674. doi: 10.1093/nar/16.17.8665. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hüttenhofer A, Weiss-Brummer B, Dirheimer G, Martin RP. A novel type of +1 frameshift suppressor: a base substitution in the anticodon stem of a yeast mitochondrial serine-tRNA causes frameshift suppression. EMBO J. 1990;9:551–558. doi: 10.1002/j.1460-2075.1990.tb08142.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Jacks T, Varmus HE. Expression of the Rous sarcoma virus pol gene by ribosomal frameshifting. Science. 1985;230:1237–1242. doi: 10.1126/science.2416054. [DOI] [PubMed] [Google Scholar]
  20. Jacks T, Townsley K, Varmus HE, Majors J. Two efficient ribosomal frameshifting events are required for synthesis of mouse mammary tumor virus gag-related polyproteins. Proc Natl Acad Sci USA. 1987;84:4298–4302. doi: 10.1073/pnas.84.12.4298. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Jacks T, Madhani HD, Masiarz FR, Varmus HE. Signals for ribosomal frameshifting in the Rous sarcoma virus gag-pol region. Cell. 1988;55:447–458. doi: 10.1016/0092-8674(88)90031-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Jacks T, Power MD, Masiarz FR, Luciw PA, Barr PJ, Varmus HE. Characterization of ribosomal frameshifting in HIV-1 gag-pol expression. Nature. 1988;331:280–283. doi: 10.1038/331280a0. [DOI] [PubMed] [Google Scholar]
  23. Johnson DA, Gautsch JW, Sportsman JR, Elder JH. Improved technique utilizing nonfat dry milk for analysis of proteins and nucleic acids transferred to nitrocellulose. Gene Anal Technol. 1984;1:3–8. [Google Scholar]
  24. Kotylak Z, Slonimski PP. Mitochondrial mutants isolated by a new screening method based upon the use of the nuclear mutation opl. In: Bandlow W, Schweyen RJ, Wolf K, Kaudewitz F, editors. Genetics and biogenesis of mitochondria. Berlin: De Gruyter; 1977. pp. 83–89. [Google Scholar]
  25. Lancashire WE, Mattoon JR. Cytoduction: a tool for mitochondrial genetics studies in yeast. Mol Gen Genet. 1979;170:333–344. doi: 10.1007/BF00267067. [DOI] [PubMed] [Google Scholar]
  26. Mogi T, Stern LJ, Chao BH, Khorana HG. Structure-function studies on bacteriorhodopsin. J Biol Chem. 1989;264:14192–14196. [PubMed] [Google Scholar]
  27. Murgola EJ. tRNA, suppression, and the code. Annu Rev Genet. 1985;19:57–80. doi: 10.1146/annurev.ge.19.120185.000421. [DOI] [PubMed] [Google Scholar]
  28. Sakai H (1989) Suppression einer mitochondrialen Frameshift-Mutation der Hefe Saccharomyces cerevisiae: Bi-direktionale nukleomitochondriale Interaktion. Dissertation, University Munich
  29. Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA. 1977;74:5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Schweyen RJ, Steyrer U, Kaudewitz F, Dujon B, Slonimski PP. Mapping of mitochondrial genes in Saccharomyces cerevisiae. Mol Gen Genet. 1976;146:117–132. doi: 10.1007/BF00268080. [DOI] [PubMed] [Google Scholar]
  31. Schweyen RJ, Weiss-Brummer B, Backhaus B, Kaudewitz F. The genetic map of mitochondrial genome in yeast. Mol Gen Genet. 1978;159:151–160. doi: 10.1007/BF00270888. [DOI] [PubMed] [Google Scholar]
  32. Sibler AP, Dirheimer G, Martin RP. Codon reading patterns in Saccharomyces cerevisiae mitochondria based on sequences of mitochondrial tRNAs. FEBS Lett. 1986;194:131–138. doi: 10.1016/0014-5793(86)80064-3. [DOI] [PubMed] [Google Scholar]
  33. Sor F, Fukuhara H. −Unequal excision of complementary strands is involved in the generation of palindromic repetitions of rho mitochondria) DNA in yeast. Cell. 1983;32:391–396. doi: 10.1016/0092-8674(83)90458-0. [DOI] [PubMed] [Google Scholar]
  34. Spanjaard RA, van Duin J. Translation of the sequence AGG-AGG yields 50% ribosomal frameshifting. Proc Natl Acad Sci USA. 1988;85:7967–7971. doi: 10.1073/pnas.85.21.7967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Toth MJ, Murgola EJ, Schimmel P. Evidence for a unique first position codon-anticodon mismatch in vivo. J Mol Biol. 1988;201:451–454. doi: 10.1016/0022-2836(88)90152-0. [DOI] [PubMed] [Google Scholar]
  36. Tsuchihashi Z, Kornberg A. Translational frameshifting generates the γ subunit of DNA polymerase III holoenzyme. Proc Natl Acad Sci USA. 1990;87:2516–2520. doi: 10.1073/pnas.87.7.2516. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Tzagoloff A, Myers AM. Genetics of mitochondrial biogenesis. Annu Rev Biochem. 1986;55:249–285. doi: 10.1146/annurev.bi.55.070186.001341. [DOI] [PubMed] [Google Scholar]
  38. Weiss R, Gallant JA. Frameshift suppression in aminoacyl-tRNA limited cells. Genetics. 1986;112:727–739. doi: 10.1093/genetics/112.4.727. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Weiss RB, Dunn DM, Dahlberg AE, Atkins JF, Gestland RE. Reading frame switch caused by base-pair formation between the 3′ end of 16S rRNA and the mRNA during elongation of the protein synthesis in Escherichia coli. EMBO J. 1988;7:1503–1507. doi: 10.1002/j.1460-2075.1988.tb02969.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Weiss-Brummer B, Hüttenhofer A. r454) in the 15S rRNA gene of the yeast Saccharomyces cerevisiaeThe paromomycin resistance mutation (par is involved in ribosomal frameshifting. Mol Gen Genet. 1989;217:362–369. doi: 10.1007/BF02464905. [DOI] [PubMed] [Google Scholar]
  41. Weiss-Brummer B, Guba R, Haid A, Schweyen RJ. Fine structure of oxi1, the mitochondrial gene coding for subunit II of yeast cytochrome c oxidase. Curr Genet. 1979;1:75–83. doi: 10.1007/BF00413308. [DOI] [PubMed] [Google Scholar]
  42. Weiss-Brummer B, Hüttenhofer A, Kaudewitz F. Leakiness of termination codons in mitochondrial mutants of the yeast Saccharomyces cerevisiae. Mol Gen Genet. 1984;198:62–68. doi: 10.1007/BF00328702. [DOI] [PubMed] [Google Scholar]
  43. Weiss-Brummer B, Sakai H, Kaudewitz F. A mitochondria) frameshift suppressor (+1) of the yeast S. cerevisiae maps in the mitochondrial 15S rRNA locus. Curr Genet. 1987;11:295–301. doi: 10.1007/BF00355403. [DOI] [PubMed] [Google Scholar]
  44. Weiss-Brummer B, Sakai H, Hüttenhofer A. A mitochondrial frameshift suppressor maps to the tRNAsser-var1 region of the mitochondrial genome of the yeast S. cerevisiae. Curr Genet. 1989;15:295–301. doi: 10.1007/BF00447038. [DOI] [PubMed] [Google Scholar]
  45. Wesolowski M, Fukuhara H. The genetic map of transfer RNA genes of yeast mitochondria. Mol Gen Genet. 1979;170:261–275. doi: 10.1007/BF00267059. [DOI] [PubMed] [Google Scholar]
  46. Wolf K, Dujon B, Slonimski PP. Mitochondrial genetics. V. Multifactorial crosses involving a mutation conferring paramomycin-resistance in Saccharomyces cerevisiae. Mol Gen Genet. 1973;125:53–90. doi: 10.1007/BF00292983. [DOI] [PubMed] [Google Scholar]

Articles from Molecular & General Genetics are provided here courtesy of Nature Publishing Group

RESOURCES