Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 2009 Feb 26;52(4):550–561. doi: 10.1007/s11430-009-0044-9

Simulation of the spread of infectious diseases in a geographical environment

ShaoBo Zhong 1,, QuanYi Huang 1, DunJiang Song 2
PMCID: PMC7088542  PMID: 32214747

Abstract

The study of mathematical models for the spread of infectious diseases is an important issue in epidemiology. Given the fact that most existing models cannot comprehensively depict heterogeneities (e.g., the population heterogeneity and the distribution heterogeneity) and complex contagion patterns (which are mostly caused by the human interaction induced by modern transportation) in the real world, a theoretical model of the spread of infectious diseases is proposed. It employs geo-entity based cellular automata to simulate the spread of infectious diseases in a geographical environment. In the model, physical geographical regions are defined as cells. The population within each cell is divided into three classes: Susceptible, Infective, and Recovered, which are further divided into some subclasses by states of individuals. The transition rules, which determine the changes of proportions of those subclasses and reciprocal transformation formulas among them, are provided. Through defining suitable spatial weighting functions, the model is applied to simulate the spread of the infectious diseases with not only local contagion but also global contagion. With some cases of simulation, it has been shown that the results are reasonably consistent with the spread of infectious diseases in the real world. The model is supposed to model dynamics of infectious diseases on complex networks, which is nearly impossible to be achieved with differential equations because of the complexity of the problem. The cases of simulation also demonstrate that efforts of all kinds of interventions can be visualized and explored, and then the model is able to provide decision-making support for prevention and control of infectious diseases.

Keywords: cellular automata, infectious disease, modeling, geographic information systems, spatial weighting function

Footnotes

Supported by Postdoctoral Foundation of China (Grant No. 20070410552) and Youth Fund of Institute of Policy and Management (IPM), the Chinese Academy of Sciences (Grant No. O700481Q01)

References

  • 1.White S. H., del Rey A. M., Sanchez G. R. Modeling epidemics using cellular automata. Appl Math Comput. 2007;186:193–202. doi: 10.1016/j.amc.2006.06.126. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Fuentes M. A., Kuperman M. N. Cellular automata and epidemiological models with spatial dependence. Physica A. 1999;267:471–486. doi: 10.1016/S0378-4371(99)00027-8. [DOI] [Google Scholar]
  • 3.Anderson R. M., May R. M. Infectious Diseases of Humans: Dynamics and Control. Oxford: Oxford University Press; 1991. [Google Scholar]
  • 4.Ahmed E., Agiza H. N. On modeling epidemics including latency, incubation and variable susceptibility. Physica A. 1998;253:347–352. doi: 10.1016/S0378-4371(97)00665-1. [DOI] [Google Scholar]
  • 5.Sirakoulis G. C., Karafyllidis I., Thanailakis A. A cellular automaton model for the effects of population movement and vaccination on epidemic propagation. Ecol Model. 2000;133:209–223. doi: 10.1016/S0304-3800(00)00294-5. [DOI] [Google Scholar]
  • 6.Wang J. F. Spatial Analysis. Beijing: Science Press; 2006. [Google Scholar]
  • 7.Von Neumann J. Theory of Self-Reproducing Automata. Urbana: University of Illinois Press; 1966. [Google Scholar]
  • 8.Liu Q. X., Jin Z. Cellular automata modelling of SEIRS. Chin Phys. 2005;14:1370–1377. doi: 10.1088/1009-1963/14/7/018. [DOI] [Google Scholar]
  • 9.Mikler A. R., Venkatachalam S., Abbas K. Modeling infectious diseases using global stochastic cellular automata. J Biol Syst. 2005;13:421–439. doi: 10.1142/S0218339005001604. [DOI] [Google Scholar]
  • 10.Huang C Y, Sun C T, Hsieh J L, et al. Simulating SARS: Small-world epidemiological modeling and public health policy assessments. J Artif Soc Soc Simul, 2004, 7(4), http://jasss.soc.surrey.ac.cuk/7/4/2.html
  • 11.Zhou C. H., Sun Z. L., Xie Y. C. Geographical Cellular Automata. Beijing: Science Press; 1999. [Google Scholar]
  • 12.Liu X. P., Li X., Anthony G. O. E. Discovery of transition rules for geographical cellular automata by using ant colony optimization. Sci China Ser-D Earth Sci. 2007;50(10):1578–1588. doi: 10.1007/s11430-007-0083-z. [DOI] [Google Scholar]
  • 13.Flache A, Hegselmann R. Do irregular grids make a difference? Relaxing the spatial regularity assumption in cellular models of social dynamics. JASSS, 2001, 4(4), http://jasss.soc.surrey.ac.uk/4/4/6.html
  • 14.Moreno N., Ménard A., Marceau D. J. VecGCA: An vector-based geographic cellular automata model allowing geometric transformations of objects. Environ Plann B. 2008;35(4):647–665. doi: 10.1068/b33093. [DOI] [Google Scholar]
  • 15.Pastor-Satorras R., Vespignani A. Epidemic spreading in scale-free networks. Phys Rev Lett. 2001;86:3200. doi: 10.1103/PhysRevLett.86.3200. [DOI] [PubMed] [Google Scholar]
  • 16.Wang X. F. Complex networks: Topology, dynamics and synchronization. Int J Bifurcat Chaos. 2002;12:885–916. doi: 10.1142/S0218127402004802. [DOI] [Google Scholar]
  • 17.Barthélemy M., Barrat A., Pastor-Satorras R. Velocity and hierarchical spread of epidemic outbreaks in scale-free networks. Phys Rev Lett. 2004;92(1):178701. doi: 10.1103/PhysRevLett.92.178701. [DOI] [PubMed] [Google Scholar]
  • 18.Shirley M. D. F., Rushton S. P. The impacts of network topology on disease spread. Ecol Complex. 2005;2:287–299. doi: 10.1016/j.ecocom.2005.04.005. [DOI] [Google Scholar]
  • 19.Draief M. Epidemic processes on complex networks: The effect of topology on the spread of epidemics. Physica A. 2006;363:120–131. doi: 10.1016/j.physa.2006.01.054. [DOI] [Google Scholar]
  • 20.Silva S. L., Ferreira J. A., Martins M. L. Epidemic spreading in a scale-free network of regular lattices. Physica A. 2007;377:689–697. doi: 10.1016/j.physa.2006.11.027. [DOI] [Google Scholar]
  • 21.Allman E. S., Rhodes J. A. Mathematical Models in Biology: An Introduction. Cambridge: Cambridge University Press; 2004. [Google Scholar]
  • 22.Tobler W. R. A computer movie simulating urban growth in the Detroit region. Econ Geol. 1970;46:234–240. [Google Scholar]
  • 23.Odland J. Spatial Autocorrelation. California: Sage Publications; 1988. [Google Scholar]
  • 24.Cliff A. D., Ord J. K. Spatial Processes: Models and Applications. London: Pion; 1981. [Google Scholar]
  • 25.Tobler W. R. Linear Operators Applied to Areal Data. London: John Wiley; 1975. [Google Scholar]
  • 26.Yue T. X., Wang Y. A., Zhang Q. YUE-SMPD scenarios of Beijing population distribution (in Chinese) Geo-information Sci. 2008;10(4):479–488. [Google Scholar]
  • 27.Meng B., Wang J. F. Understanding the spatial diffusion process of SARS in Beijing. Public Health. 2005;119:1080–1087. doi: 10.1016/j.puhe.2005.02.003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Wang J. F., McMichael A. J., Meng B. Spatial dynamics of an epidemic of severe acute respiratory syndrome in an urban area. Bull World Health Organ. 2006;84:965–968. doi: 10.2471/BLT.06.030247. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Bombardt J. N. Congruent epidemic models for unstructured and structured populations: Analytical reconstruction of a 2003 SARS outbreak. Math Biosci. 2006;203:171–203. doi: 10.1016/j.mbs.2006.05.004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Bowen J. T., Jr, Laroe C. Airline networks and the international diffusion of severe acute respiratory syndrome (SARS) Geogr J. 2006;72:130–144. doi: 10.1111/j.1475-4959.2006.00196.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31.Ruan S., Wang W., Levin S. A. The effect of global travel on the spread of SARS. Math Biosci Eng. 2006;3:205–218. doi: 10.3934/mbe.2006.3.205. [DOI] [PubMed] [Google Scholar]
  • 32.Wang J. F., Christakos G., Han W. G. Data-driven exploration of “spatial pattern-time process-driving forces” associations of SARS epidemic in Beijing, China. J Public Health. 2008;30(3):234–244. doi: 10.1093/pubmed/fdn023. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Science in China. Series D, Earth Sciences are provided here courtesy of Nature Publishing Group

RESOURCES