Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 2011 Dec 16;54(11):1011–1018. doi: 10.1007/s11427-011-4236-0

Cellular membrane cholesterol is required for porcine reproductive and respiratory syndrome virus entry and release in MARC-145 cells

Ying Sun 1,2, ShaoBo Xiao 1,2, Dang Wang 1,2, Rui Luo 1,2, Bin Li 1,2, HuanChun Chen 1,2, LiuRong Fang 1,2,
PMCID: PMC7088586  PMID: 22173307

Abstract

Cholesterol represents one of the key constituents of small, dynamic, sterol- and sphingolipid-enriched domains on the plasma membrane. It has been reported that many viruses depend on plasma membrane cholesterol for efficient infection. In this study, the role of the plasma membrane cholesterol in porcine reproductive and respiratory syndrome virus (PRRSV) infection of MARC-145 cells was investigated. Pretreatment of MARC-145 cells with methyl-β-cyclodextrin (MβCD), a drug used to deplete cholesterol from cellular membrane, significantly reduced PRRSV infection in a dose-dependent manner. This inhibition was partially reversed by supplementing exogenous cholesterol following MβCD treatment, suggesting that the inhibition of PRRSV infection was specifically mediated by removal of cellular cholesterol. Further detailed studies showed that depletion of cellular membrane cholesterol significantly inhibited virus entry, especially virus attachment and release. These results indicate that the presence of cholesterol in the cellular membrane is a key component of PRRSV infection.

Keywords: porcine reproductive and respiratory syndrome virus (PRRSV), cholesterol, virus entry, release, membrane fusion

Footnotes

This article is published with open access at Springerlink.com

References

  • 1.Rossow K. D. Porcine reproductive and respiratory syndrome. Vet Pathol. 1998;35:1–20. doi: 10.1177/030098589803500101. [DOI] [PubMed] [Google Scholar]
  • 2.Meulenberg J. J. PRRSV, the virus. Vet Res. 2000;31:11–21. doi: 10.1051/vetres:2000103. [DOI] [PubMed] [Google Scholar]
  • 3.Mateu E., Diaz I. The challenge of PRRS immunology. Vet J. 2008;177:345–351. doi: 10.1016/j.tvjl.2007.05.022. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Plagemann P. G., Moennig V. Lactate dehydrogenase-elevating virus, equine arteritis virus, and simian hemorrhagic fever virus: a new group of positive-strand RNA viruses. Adv Virus Res. 1992;41:99–192. doi: 10.1016/S0065-3527(08)60036-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Benfield D. A., Nelson E., Collins J. E., et al. Characterisation of swine infertility and respiratory syndrome (SIRS) virus (isolate ATCC VR-2332) J Vet Diagn Invest. 1992;4:127–133. doi: 10.1177/104063879200400202. [DOI] [PubMed] [Google Scholar]
  • 6.Duan X., Nauwynck H. J., Pensaert M. B. Effects of origin and state of differentiation and activation of monocytes/macrophages on their susceptibility to porcine reproductive and respiratory syndrome virus (PRRSV) Arch Virol. 1997;142:2483–2497. doi: 10.1007/s007050050256. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Kim H. S., Kwang J., Yoon I. J., et al. Enhanced replication of porcine reproductive and respiratory syndrome (PRRS) virus in a homogeneous subpopulation of MA-104 cell line. Arch Virol. 1993;133:477–483. doi: 10.1007/BF01313785. [DOI] [PubMed] [Google Scholar]
  • 8.Wensvoort G., de Kluyver E. P., Pol J. M., et al. Lelystad virus, the cause of porcine epidemic abortion and respiratory syndrome: a review of mystery swine disease research at Lelystad. Vet Microbiol. 1992;33:185–193. doi: 10.1016/0378-1135(92)90046-V. [DOI] [PubMed] [Google Scholar]
  • 9.Kreutz L. C. Cellular membrane factors are the major determinants of porcine reproductive and respiratory syndrome virus tropism. Virus Res. 1998;53:121–128. doi: 10.1016/S0168-1702(97)00134-2. [DOI] [PubMed] [Google Scholar]
  • 10.Van Gorp H., Van Breedam W., Delputte P. L., et al. The porcine reproductive and respiratory syndrome virus requires trafficking through CD163-posotive early endosomes, but not late endosomes, for productive infection. Arch Virol. 2009;154:1939–1943. doi: 10.1007/s00705-009-0527-1. [DOI] [PubMed] [Google Scholar]
  • 11.Nauwynck H. J., Duan X., Favoreel H. W., et al. Entry of porcine reproductive and respiratory syndrome virus into porcine alveolar macrophages via receptor-mediated endocytosis. J Gen Virol. 1999;80:297–305. doi: 10.1099/0022-1317-80-2-297. [DOI] [PubMed] [Google Scholar]
  • 12.Delputte P. L., Costers S., Nauwynck H. J. Analysis of porcine reproductive and respiratory syndrome virus attachment and internalization: distinctive roles for heparan sulphate and sialoadhesin. J Gen Virol. 2005;86:1441–1445. doi: 10.1099/vir.0.80675-0. [DOI] [PubMed] [Google Scholar]
  • 13.Van Breedam W., Delputte P. L., Van Gorp H., et al. Porcine reproductive and respiratory syndrome virus entry into the porcine macrophage. J Gen Virol. 2010;91:1659–1667. doi: 10.1099/vir.0.020503-0. [DOI] [PubMed] [Google Scholar]
  • 14.Kim J. K., Fahad A. M., Shanmukhappa K., et al. Defining the cellular target(s) of porcine reproductive and respiratory syndrome virus blocking monoclonal antibody 7G10. J Virol. 2006;80:689–696. doi: 10.1128/JVI.80.2.689-696.2006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Shanmukhappa K., Kim J. K., Kapil S. Role of CD151, a tetraspanin, in porcine reproductive and respiratory syndrome virus infection. J Virol. 2007;4:62. doi: 10.1186/1743-422X-4-62. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Kielian M. C., Helenius A. Role of cholesterol in fusion of Semliki forest virus with membranes. J Virol. 1984;52:281–283. doi: 10.1128/jvi.52.1.281-283.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Nieva J. L., Bron R., Corver J., et al. Membrane fusion of Semliki forest virus requires sphingolipids in the target membrane. EMBO J. 1994;13:2797–2804. doi: 10.1002/j.1460-2075.1994.tb06573.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Bavari S., Bosio C. M., Wiegand E., et al. Lipid raft microdomains: a gateway for compartmentalized trafficking of Ebola and Marburg viruses. J Exp Med. 2002;195:593–602. doi: 10.1084/jem.20011500. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Del Real G., Jimenez-Baranda S., Lacalle R. A., et al. Blocking of HIV-1 infection by targeting CD4 to nonraft membrane domains. J Exp Med. 2002;196:293–301. doi: 10.1084/jem.20020308. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Simons K., Ikonen E. Functional rafts in cell membranes. Nature. 1997;387:569–572. doi: 10.1038/42408. [DOI] [PubMed] [Google Scholar]
  • 21.Chazal N., Gerlier D. Virus entry, assembly, budding, and membrane rafts. Microbiol Mol Biol Rev. 2003;67:226–237. doi: 10.1128/MMBR.67.2.226-237.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Viard M., Parolini I., Sargiacomo M., et al. Role of cholesterol in human immunodeficiency virus type 1 envelope protein-mediated fusion with host cells. J Virol. 2002;76:11584–11595. doi: 10.1128/JVI.76.22.11584-11595.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Danthi P., Chow M. Cholesterol removal by methyl-beta-cyclodextrin inhibits poliovirus entry. J Virol. 2004;78:33–41. doi: 10.1128/JVI.78.1.33-41.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Thorp E. B., Gallagher T. M. Requirements for CEACAMs and cholesterol during murine coronavirus cell entry. J Virol. 2004;78:2682–2692. doi: 10.1128/JVI.78.6.2682-2692.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Chung C. S., Huang C. Y., Chang W. Vaccinia virus penetration requires cholesterol and results in specific viral envelope proteins associated with lipid rafts. J Virol. 2005;79:1623–1634. doi: 10.1128/JVI.79.3.1623-1634.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Bender F. C., Whitbeck J. C., Ponce de Leon M., et al. Specific association of glycoprotein B with lipid rafts during herpes simplex virus entry. J Virol. 2003;77:9542–9552. doi: 10.1128/JVI.77.17.9542-9552.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Martin-Acebes M. A., Gonzalez-Magaldi M., Sandvig K., et al. Productive entry of type C foot-and-mouth disease virus into susceptible cultured cells requires clathrin and is dependent on the presence of plasma membrane cholesterol. Virology. 2007;369:105–118. doi: 10.1016/j.virol.2007.07.021. [DOI] [PubMed] [Google Scholar]
  • 28.Li G. M., Li Y. G., Yamate M., et al. Lipid rafts play an important role in the early stage of severe acute respiratory syndrome-coronavirus life cycle. Microbes Infect. 2007;9:96–102. doi: 10.1016/j.micinf.2006.10.015. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Barman S., Nayak D. P. Lipid raft disruption by cholesterol depletion enhances influenza A virus budding from MDCK cells. J Virol. 2007;81:12169–12178. doi: 10.1128/JVI.00835-07. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Nitschke M., Korte T., Tielesch C., et al. Equine arteritis virus is delivered to an acidic compartment of host cells via clathrin-dependent endocytosis. Virology. 2008;377:248–254. doi: 10.1016/j.virol.2008.04.041. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31.Li B., Xiao S., Wang Y., et al. Immunogenicity of the highly pathogenic porcine reproductive and respiratory syndrome virus GP5 protein encoded by a synthetic ORF5 gene. Vaccine. 2009;27:1957–1963. doi: 10.1016/j.vaccine.2009.01.098. [DOI] [PubMed] [Google Scholar]
  • 32.Popik W., Alce T. M., Au W. C. Human immunodeficiency virus type 1 uses lipid raft-colocalized CD4 and chemokine receptors for productive entry into CD4+ T cells. J Virol. 2002;76:4709–4722. doi: 10.1128/JVI.76.10.4709-4722.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33.Egli C., Thur B., Liu L., et al. Quantitative Taqman RT-PCR for the detection and differentiation of European and North American strains of porcine reproductive and respiratory syndrome virus. J Virol Methods. 2001;98:63–75. doi: 10.1016/S0166-0934(01)00358-5. [DOI] [PubMed] [Google Scholar]
  • 34.Hambleton S., Steinberg S. P., Gershon M. D., et al. Cholesterol dependence of varicella-zoster virion entry into target cells. J Virol. 2007;81:7548–7558. doi: 10.1128/JVI.00486-07. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35.Desplanques A. S., Nauwynck H. J., Vercauteren D., et al. Plasma membrane cholesterol is required for efficient pseudorabies virus entry. Virology. 2008;376:339–345. doi: 10.1016/j.virol.2008.03.039. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Burger K., Gimpl G., Fahrenholz F. Regulation of receptor function by cholesterol. Cell Mol Life Sci. 2000;57:1577–1592. doi: 10.1007/PL00000643. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37.Chang H. M., Reitstetter R., Mason R. P., et al. Attenuation of channel kinetics and conductance by cholesterol: an interpretation using structural stress as a unifying concept. J Membr Biol. 1995;143:51–63. doi: 10.1007/BF00232523. [DOI] [PubMed] [Google Scholar]
  • 38.Teissier E., Pecheur E. I. Lipids as modulators of membrane fusion mediated by viral fusion proteins. Eur Biophys J. 2007;36:887–899. doi: 10.1007/s00249-007-0201-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 39.Stulnig T. M., Berger M., Sigmund T., et al. Signal transduction via glycosyl phosphatidylinositol-anchored proteins in T cells is inhibited by lowering cellular cholesterol. J Biol Chem. 1997;272:19242–19247. doi: 10.1074/jbc.272.31.19242. [DOI] [PubMed] [Google Scholar]
  • 40.Laliberte J. P., McGinnes L. W., Peeples M. E., et al. Integrity of membrane lipid rafts is necessary for the ordered assembly and release of infectious Newcastle disease virus particles. J Virol. 2006;80:10652–10662. doi: 10.1128/JVI.01183-06. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Science China. Life Sciences are provided here courtesy of Nature Publishing Group

RESOURCES