Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 2016 Apr 7;59(5):487–494. doi: 10.1007/s11427-016-5042-5

Small G Rac1 is involved in replication cycle of dengue serotype 2 virus in EAhy926 cells via the regulation of actin cytoskeleton

Jing Zhang 1, Na Wu 1, Na Gao 1, Wenli Yan 1, Ziyang Sheng 1, Dongying Fan 1, Jing An 1,2,
PMCID: PMC7088618  PMID: 27056258

Abstract

Bleeding is a clinical characteristic of severe dengue and may be due to increased vascular permeability. However, the pathogenesis of severe dengue remains unclear. In this study, we showed that the Rac1-microfilament signal pathway was involved in the process of DENV serotype 2 (DENV2) infection in EAhy926 cells. DENV2 infection induced dynamic changes in actin organization, and treatment with Cytochalasin D or Jasplakinolide disrupted microfilament dynamics, reduced DENV2 entry, and inhibited DENV2 assembly and maturation. Rac1 activities decreased during the early phase and gradually increased by the late phase of infection. Expression of the dominant-negative form of Rac1 promoted DENV2 entry but inhibited viral assembly, maturation and release. Our findings demonstrated that Rac1 plays an important role in the DENV2 life cycle by regulating actin reorganization in EAhy926 cells. This finding provides further insight into the pathogenesis of severe dengue.

Keywords: dengue virus, small Rho GTPase Rac1, actin, vascular endothelial cells

Footnotes

This article is published with open access at link.springer.com

References

  1. Angelini M.M., Akhlaghpour M., Neuman B.W., Buchmeier M.J. Severe acute respiratory syndrome coronavirus nonstructural proteins 3, 4, and 6 induce double-membrane vesicles. 2013. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bass D.M., Baylor M., Chen C., Upadhyayula U. Dansylcadaverine and cytochalasin D enhance rotavirus infection of murine L cells. Virology. 1995;212:429–437. doi: 10.1006/viro.1995.1500. [DOI] [PubMed] [Google Scholar]
  3. Bhatt S., Gething P.W., Brady O.J., Messina J.P., Farlow A.W., Moyes C.L., Drake J.M., Brownstein J.S., Hoen A.G., Sankoh O., Myers M.F., George D.B., Jaenisch T., Wint G.R., Simmons C.P., Scott T.W., Farrar J.J., Hay S.I. The global distribution and burden of dengue. Nature. 2013;496:504–507. doi: 10.1038/nature12060. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bokoch G.M., Vlahos C.J., Wang Y., Knaus U.G., Traynor-Kaplan A.E. Rac GTPase interacts specifically with phosphatidylinositol 3-kinase. Biochem J. 1996;315:775–779. doi: 10.1042/bj3150775. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chu J.J., Choo B.G., Lee J.W., Ng M.L. Actin filaments participate in West Nile (Sarafend) virus maturation process. J Med Virol. 2003;71:463–472. doi: 10.1002/jmv.10495. [DOI] [PubMed] [Google Scholar]
  6. Dai J., Pan W., Wang P. ISG15 facilitates cellular antiviral response to dengue and west nile virus infection in vitro. Virol J. 2011;8:468. doi: 10.1186/1743-422X-8-468. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Edwards D.C., Sanders L.C., Bokoch G.M., Gill G.N. Activation of LIM-kinase by Pak1 couples Rac/Cdc42 GTPase signalling to actin cytoskeletal dynamics. Nat Cell Biol. 1999;1:253–259. doi: 10.1038/12963. [DOI] [PubMed] [Google Scholar]
  8. Fang X., Hu Z., Shang W., Zhu J., Xu C., Rao X. Genetic polymorphisms of molecules involved in host immune response to dengue virus infection. FEMS Immunol Med Microbiol. 2012;66:134–146. doi: 10.1111/j.1574-695X.2012.00995.x. [DOI] [PubMed] [Google Scholar]
  9. Frischknecht F., Moreau V., Rottger S., Gonfloni S., Reckmann I., Superti-Furga G., Way M. Actin-based motility of vaccinia virus mimics receptor tyrosine kinase signalling. Nature. 1999;401:926–929. doi: 10.1038/44860. [DOI] [PubMed] [Google Scholar]
  10. Garoff H., Hewson R., Opstelten D.J. Virus maturation by budding. Microbiol Mol Biol Rev. 1998;62:1171–1190. doi: 10.1128/mmbr.62.4.1171-1190.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Green A.M., Beatty P.R., Hadjilaou A., Harris E. Innate immunity to dengue virus infection and subversion of antiviral responses. J Mol Biol. 2014;426:1148–1160. doi: 10.1016/j.jmb.2013.11.023. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hanley J.G. Actin-dependent mechanisms in AMPA receptor trafficking. Front Cell Neurosci. 2014;8:381. doi: 10.3389/fncel.2014.00381. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hishiki T., Han Q., Arimoto K., Shimotohno K., Igarashi T., Vasudevan S.G., Suzuki Y., Yamamoto N. Interferon-mediated ISG15 conjugation restricts dengue virus 2 replication. Biochem Biophys Res Commun. 2014;448:95–100. doi: 10.1016/j.bbrc.2014.04.081. [DOI] [PubMed] [Google Scholar]
  14. Jimenez-Baranda S., Gomez-Mouton C., Rojas A., Martinez-Prats L., Mira E. A., Lacalle R., Valencia A., Dimitrov D.S., Viola A., Delgado R., Martinez A.C., Manes S. Filamin-A regulates actin-dependent clustering of HIV receptors. Nat Cell Biol. 2007;9:838–846. doi: 10.1038/ncb1610. [DOI] [PubMed] [Google Scholar]
  15. Kallewaard N.L., Bowen A.L., Crowe J.E. Cooperativity of actin and microtubule elements during replication of respiratory syncytial virus. Virology. 2005;331:73–81. doi: 10.1016/j.virol.2004.10.010. [DOI] [PubMed] [Google Scholar]
  16. Krishna D., Le Doux J.M. Murine leukemia virus particles activate Rac1 in HeLa cells. Biochem Biophys Res Commun. 2006;345:1184–1193. doi: 10.1016/j.bbrc.2006.05.027. [DOI] [PubMed] [Google Scholar]
  17. Lamaze C., Chuang T.H., Terlecky L.J., Bokoch G.M., Schmid S.L. Regulation of receptor-mediated endocytosis by Rho and Rac. Nature. 1996;382:177–179. doi: 10.1038/382177a0. [DOI] [PubMed] [Google Scholar]
  18. Lei S., Tian Y.P., Xiao W.D., Li S., Rao X.C., Zhang J.L., Yang J., Hu X.M., Chen W. ROCK is involved in vimentin phosphorylation and rearrangement induced by dengue virus. Cell Biochem Biophys. 2013;67:1333–1342. doi: 10.1007/s12013-013-9665-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Li E., Stupack D., Bokoch G.M., Nemerow G.R. Adenovirus endocytosis requires actin cytoskeleton reorganization mediated by Rho family GTPases. J Virol. 1998;72:8806–8812. doi: 10.1128/jvi.72.11.8806-8812.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Lyman M.G., Enquist L.W. Herpesvirus interactions with the host cytoskeleton. J Virol. 2009;83:2058–2066. doi: 10.1128/JVI.01718-08. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Monaghan P., Gold S., Simpson J., Zhang Z., Weinreb P.H., Violette S.M., Alexandersen S., Jackson T. The alpha(v)beta6 integrin receptor for Foot-and-mouth disease virus is expressed constitutively on the epithelial cells targeted in cattle. J Gen Virol. 2005;86:2769–2780. doi: 10.1099/vir.0.81172-0. [DOI] [PubMed] [Google Scholar]
  22. Morrison T.G., McGinnes L.J. Cytochalasin D accelerates the release of Newcastle disease virus from infected cells. Virus Res. 1985;4:93–106. doi: 10.1016/0168-1702(85)90023-1. [DOI] [PubMed] [Google Scholar]
  23. Normile D. Tropical medicine. Surprising new dengue virus throws a spanner in disease control efforts. Science. 2013;342:415. doi: 10.1126/science.342.6157.415. [DOI] [PubMed] [Google Scholar]
  24. Ott D.E., Coren L.V., Kane B.P., Busch L.K., Johnson D.G., Sowder R.C., Chertova E.N., Arthur L.O., Henderson L.E. Cytoskeletal proteins inside human immunodeficiency virus type 1 virions. J Virol. 1996;70:7734–7743. doi: 10.1128/jvi.70.11.7734-7743.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Pfanzagl B., Andergassen D., Edlmayr J., Niespodziana K., Valenta R., Blaas D. Entry of human rhinovirus 89 via ICAM-1 into HeLa epithelial cells is inhibited by actin skeleton disruption and by bafilomycin. Arch Virol. 2014;159:125–140. doi: 10.1007/s00705-013-1797-1. [DOI] [PubMed] [Google Scholar]
  26. Povoa T.F., Alves A.M., Oliveira C.A., Nuovo G.J., Chagas V.L., Paes M.V. The pathology of severe dengue in multiple organs of human fatal cases: histopathology, ultrastructure and virus replication. PLoS One. 2014;9:83386. doi: 10.1371/journal.pone.0083386. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Ravkov E.V., Nichol S.T., Peters C.J., Compans R.W. Role of actin microfilaments in Black Creek Canal virus morphogenesis. J Virol. 1998;72:2865–2870. doi: 10.1128/jvi.72.4.2865-2870.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Sanlioglu S., Benson P.K., Yang J., Atkinson E.M., Reynolds T., Engelhardt J.F. Endocytosis and nuclear trafficking of adeno-associated virus type 2 are controlled by rac1 and phosphatidylinositol-3 kinase activation. J Virol. 2000;74:9184–9196. doi: 10.1128/JVI.74.19.9184-9196.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Sodeik B., Ebersold M.W., Helenius A. Microtubule- mediated transport of incoming herpes simplex virus 1 capsids to the nucleus. J Cell Biol. 1997;136:1007–1021. doi: 10.1083/jcb.136.5.1007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Stefanovic S., Windsor M., Nagata K.I., Inagaki M., Wileman T. Vimentin rearrangement during African swine fever virus infection involves retrograde transport along microtubules and phosphorylation of vimentin by calcium calmodulin kinase II. J Virol. 2005;79:11766–11775. doi: 10.1128/JVI.79.18.11766-11775.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Sun X., Whittaker G.R. Role of the actin cytoskeleton during influenza virus internalization into polarized epithelial cells. Cell Microbiol. 2007;9:1672–1682. doi: 10.1111/j.1462-5822.2007.00900.x. [DOI] [PubMed] [Google Scholar]
  32. Tan T.L., Fang N., Neo T.L., Singh P., Zhang J., Zhou R., Koh C.G., Chan V., Lim S.G., Chen W.N. Rac1 GTPase is activated by hepatitis B virus replication—involvement of HBX. Biochim Biophys Acta. 2008;1783:360–374. doi: 10.1016/j.bbamcr.2007.10.024. [DOI] [PubMed] [Google Scholar]
  33. Tolias K.F., Cantley L.C., Carpenter C.L. Rho family GTPases bind to phosphoinositide kinases. J Biol Chem. 1995;270:17656–17659. doi: 10.1074/jbc.270.30.17656. [DOI] [PubMed] [Google Scholar]
  34. Wang J.L., Zhang J.L., Chen W., Xu X.F., Gao N., Fan D.Y., An J. PLoS Negl Trop Dis. 2010. Roles of small GTPase Rac1 in the regulation of actin cytoskeleton during dengue virus infection. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Weir D.L., Laing E.D., Smith I.L., Wang L.F., Broder C.C. Host cell virus entry mediated by Australian bat lyssavirus G envelope glycoprotein occurs through a clathrin-mediated endocytic pathway that requires actin and Rab5. Virol J. 2014;11:40. doi: 10.1186/1743-422X-11-40. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Yang N., Higuchi O., Ohashi K., Nagata K., Wada A., Kangawa K., Nishida E., Mizuno K. Cofilin phosphorylation by LIM-kinase 1 and its role in Rac-mediated actin reorganization. Nature. 1998;393:809–812. doi: 10.1038/31735. [DOI] [PubMed] [Google Scholar]
  37. Zhang J.L., Wang J.L., Gao N., Chen Z.T., Tian Y.P., An J. Up-regulated expression of beta3 integrin induced by dengue virus serotype 2 infection associated with virus entry into human dermal microvascular endothelial cells. Biochem Biophys Res Commun. 2007;356:763–768. doi: 10.1016/j.bbrc.2007.03.051. [DOI] [PubMed] [Google Scholar]

Articles from Science China. Life Sciences are provided here courtesy of Nature Publishing Group

RESOURCES