Abstract
Infectious diseases, mostly caused by bacteria and viruses but also a result of fungal and parasitic infection, have been one of the most important public health concerns throughout human history. The first step in combating these pathogens is to get a timely and accurate diagnosis at an affordable cost. Many kinds of diagnostics have been developed, such as pathogen culture, biochemical tests and serological tests, to help detect and fight against the causative agents of diseases. However, these diagnostic tests are generally unsatisfactory because they are not particularly sensitive and specific and are unable to deliver speedy results. Nucleic acid-based diagnostics, detecting pathogens through the identification of their genomic sequences, have shown promise to overcome the above limitations and become more widely adopted in clinical tests. Here we review some of the most popular nucleic acid-based diagnostics and focus on their adaptability and applicability to routine clinical usage. We also compare and contrast the characteristics of different types of nucleic acid-based diagnostics.
Keywords: nucleic acid-based diagnostics, infectious disease, PCR, NASBA, LAMP, microarray, LOAC, public health affairs
Contributor Information
Albert Cheung-Hoi Yu, Email: achy@haikanglife.com, Email: achy@hsc.pku.edu.cn.
Lok-Ting Lau, Email: terence.lau@haikanglife.com.
References
- 1.Apostolopoulos Y., Sonmez S. Population mobility and infectious disease. New York, NY: Springer; 2007. [Google Scholar]
- 2.Zetterström R. The Nobel Prize in 2005 for the discovery of Helicobacter pylori: implications for child health. Acta Paediatr. 2006;95(1):3–5. doi: 10.1080/08035250500479616. [DOI] [PubMed] [Google Scholar]
- 3.Vomelová I., Vanícková Z., Sedo A. Methods of RNA purification. All ways (should) lead to Rome. Folia Biol (Praha) 2009;55(6):243–251. [PubMed] [Google Scholar]
- 4.Demeke T., Jenkins G.R. Influence of DNA extraction methods, PCR inhibitors and quantification methods on real-time PCR assay of biotechnology-derived traits. Anal Bioanal Chem. 2010;396(6):1977–1990. doi: 10.1007/s00216-009-3150-9. [DOI] [PubMed] [Google Scholar]
- 5.Wu W., Tang Y.W. Emerging molecular assays for detection and characterization of respiratory viruses. Clin Lab Med. 2009;29(4):673–693. doi: 10.1016/j.cll.2009.07.005. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 6.Saiki R.K., Scharf S., Faloona F., Mullis K.B., Horn G.T., Erlich H.A., Arnheim N. Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science. 1985;230(4732):1350–1354. doi: 10.1126/science.2999980. [DOI] [PubMed] [Google Scholar]
- 7.Chien A., Edgar D.B., Trela J.M. Deoxyribonucleic acid polymerase from the extreme thermophile Thermus aquaticus. J Bacteriol. 1976;127(3):1550–1557. doi: 10.1128/jb.127.3.1550-1557.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 8.Saiki R.K., Gelfand D.H., Stoffel S., Scharf S.J., Higuchi R., Horn G.T., Mullis K.B., Erlich H.A. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science. 1988;239(4839):487–491. doi: 10.1126/science.2448875. [DOI] [PubMed] [Google Scholar]
- 9.Freeman W.M., Walker S.J., Vrana K.E. Quantitative RT-PCR: pitfalls and potential. Biotechniques. 1999;26(1):112–122. doi: 10.2144/99261rv01. [DOI] [PubMed] [Google Scholar]
- 10.Yu A.C. The difficulties of testing for SARS. Science. 2004;303(5657):469–471. doi: 10.1126/science.303.5657.469. [DOI] [PubMed] [Google Scholar]
- 11.Song H.D., Tu C.C., Zhang G.W., Wang S.Y., Zheng K., Lei L.C., Chen Q.X., Gao Y.W., Zhou H.Q., Xiang H., Zheng H.J., Chern S.W., Cheng F., Pan C.M., Xuan H., Chen S.J., Luo H.M., Zhou D.H., Liu Y.F., He J.F., Qin P.Z., Li L.H., Ren Y.Q., Liang W.J., Yu Y.D., Anderson L., Wang M., Xu R.H., Wu X.W., Zheng H.Y., Chen J.D., Liang G., Gao Y., Liao M., Fang L., Jiang L.Y., Li H., Chen F., Di B., He L.J., Lin J.Y., Tong S., Kong X., Du L., Hao P., Tang H., Bernini A., Yu X.J., Spiga O., Guo Z.M., Pan H.Y., He W.Z., Manuguerra J.C., Fontanet A., Danchin A., Niccolai N., Li Y.X., Wu C.I., Zhao G.P. Cross-host evolution of severe acute respiratory syndrome coronavirus in palm civet and human. Proc Natl Acad Sci USA. 2005;102(7):2430–2435. doi: 10.1073/pnas.0409608102. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 12.Yu A.C., Lau L.T., Fung Y.W. Boosting the sensitivity of real-time polymerase-chain-reaction testing for SARS. N Engl J Med. 2004;350(15):1577–1579. doi: 10.1056/NEJM200404083501523. [DOI] [PubMed] [Google Scholar]
- 13.Lau L.T., Fung Y.W., Wong F.P., Lin S.S., Wang C.R., Li H.L., Dillon N., Collins R.A., Tam J.S., Chan P.K., Wang C.G., Yu A.C. A real-time PCR for SARS-coronavirus incorporating target gene pre-amplification. Biochem Biophys Res Commun. 2003;312(4):1290–1296. doi: 10.1016/j.bbrc.2003.11.064. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 14.Lau L.T., Banks J., Aherne R., Brown I.H., Dillon N., Collins R.A., Chan K.Y., Fung Y.W., Xing J., Yu A.C. Nucleic acid sequence-based amplification methods to detect avian influenza virus. Biochem Biophys Res Commun. 2004;313(2):336–342. doi: 10.1016/j.bbrc.2003.11.131. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 15.Watson J.D., Crick F.H. Molecular structure of nucleic acids: a structure for deoxyribose nucleic acid. Nature. 1953;171(4356):737–738. doi: 10.1038/171737a0. [DOI] [PubMed] [Google Scholar]
- 16.Kremer E.J., Pritchard M., Lynch M., Yu S., Holman K., Baker E., Warren S.T., Schlessinger D., Sutherland G.R., Richards R.I. Mapping of DNA instability at the fragile X to a trinucleotide repeat sequence p(CCG)n. Science. 1991;252(5013):1711–1714. doi: 10.1126/science.1675488. [DOI] [PubMed] [Google Scholar]
- 17.Gill P. DNA as evidence—the technology of identification. N Engl J Med. 2005;352(26):2669–2671. doi: 10.1056/NEJMp048359. [DOI] [PubMed] [Google Scholar]
- 18.Alcamo I.E. DNA Technology: the Awesome Skill. New York: Academic Press; 2001. DNA analysis and diagnosis. [Google Scholar]
- 19.Writing Committee of the WHO Consultation on Clinical Aspects of Pandemic 2009 Influenza. Bautista E, Chotpitayasunondh T, Gao Z, Harper SA, Shaw M, Uyeki TM, Zaki SR, Hayden FG, Hui DS, Kettner JD, Kumar A, Lim M, Shindo N, Penn C, Nicholson KG. Clinical aspects of pandemic 2009 influenza A (H1N1) virus infection. N Engl J Med 2. 2010;362(18):1708–1719. doi: 10.1056/NEJMra1000449. [DOI] [PubMed] [Google Scholar]
- 20.Oner A.F., Bay A., Arslan S., Akdeniz H., Sahin H.A., Cesur Y., Epcacan S., Yilmaz N., Deger I., Kizilyildiz B., Karsen H., Ceyhan M. Avian influenza A (H5N1) infection in eastern Turkey in 2006. N Engl J Med. 2006;355(21):2179–2185. doi: 10.1056/NEJMoa060601. [DOI] [PubMed] [Google Scholar]
- 21.Boppana S.B., Ross S.A., Shimamura M., Palmer A.L., Ahmed A., Michaels M.G., Sánchez P.J., Bernstein D.I., Tolan R.W., Jr, Novak Z., Chowdhury N., Britt W.J., Fowler K.B., National Institute on DeafnessOther Communication Disorders CHIMES Study Saliva polymerase-chain-reaction assay for cytomegalovirus screening in newborns. N Engl J Med. 2011;364(22):2111–2118. doi: 10.1056/NEJMoa1006561. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 22.McDermott U., Downing J.R., Stratton M.R. Genomics and the continuum of cancer care. N Engl J Med. 2011;364(4):340–350. doi: 10.1056/NEJMra0907178. [DOI] [PubMed] [Google Scholar]
- 23.Baltzell K., Buehring G.C., Krishnamurthy S., Kuerer H., Shen H.M., Sison J.D. Limited evidence of human papillomavirus on breast tissue using molecular in situ methods. Cancer. 2011;118(5):1212–1220. doi: 10.1002/cncr.26389. [DOI] [PubMed] [Google Scholar]
- 24.Yamamoto Y. PCR in diagnosis of infection: detection of bacteria in cerebrospinal fluids. Clin Diagn Lab Immunol. 2002;9(3):508–514. doi: 10.1128/CDLI.9.3.508-514.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 25.Labarre P., Gerlach J., Wilmoth J., Beddoe A., Singleton J., Weigl B. Non-instrumented nucleic acid amplification (NINA): instrumentfree molecular malaria diagnostics for low-resource settings. Conf Proc IEEE Eng Med Biol Soc. 2010;2010:1097–1099. doi: 10.1109/IEMBS.2010.5627346. [DOI] [PubMed] [Google Scholar]
- 26.Compton J. Nucleic acid sequence-based amplification. Nature. 1991;350(6313):91–92. doi: 10.1038/350091a0. [DOI] [PubMed] [Google Scholar]
- 27.Romano J.W., van Gemen B., Kievits T. NASBA: a novel, isothermal detection technology for qualitative and quantitative HIV-1 RNA measurements. Clin Lab Med. 1996;16(1):89–103. [PubMed] [Google Scholar]
- 28.Vincent M., Xu Y., Kong H. Helicase-dependent isothermal DNA amplification. EMBO Rep. 2004;5(8):795–800. doi: 10.1038/sj.embor.7400200. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 29.Liu D., Daubendiek S.L., Zillman M.A., Ryan K., Kool E.T. Rolling circle DNA synthesis: small circular oligonucleotides as efficient templates for DNA polymerases. J Am Chem Soc. 1996;118(7):1587–1594. doi: 10.1021/ja952786k. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 30.Walker G.T., Fraiser M.S., Schram J.L., Little M.C., Nadeau J.G., Malinowski D.P. Strand displacement amplification-an isothermal, in vitro DNA amplification technique. Nucleic Acids Res. 1992;20(7):1691–1696. doi: 10.1093/nar/20.7.1691. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 31.Walker G.T., Little M.C., Nadeau J.G., Shank D.D. Isothermal in vitro amplification of DNA by a restriction enzyme/DNA polymerase system. Proc Natl Acad Sci USA. 1992;89(1):392–396. doi: 10.1073/pnas.89.1.392. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 32.Lau L.T., Fung Y.W., Yu A.C. Detection of animal viruses using nucleic acid sequence-based amplification (NASBA) Dev Biol (Basel) 2006;126:7–15. [PubMed] [Google Scholar]
- 33.Boom R., Sol C.J., Salimans M.M., Jansen C.L., Wertheim-van Dillen P.M., van der Noordaa J. Rapid and simple method for purification of nucleic acids. J Clin Microbiol. 1990;28(3):495–503. doi: 10.1128/jcm.28.3.495-503.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 34.Collins R.A., Ko L.S., So K.L., Ellis T., Lau L.T., Yu A.C. A NASBA method to detect high- and low-pathogenicity H5 avian influenza viruses. Avian Dis. 2003;47(3Suppl):1069–1074. doi: 10.1637/0005-2086-47.s3.1069. [DOI] [PubMed] [Google Scholar]
- 35.Gu J., Xie Z., Gao Z., Liu J., Korteweg C., Ye J., Lau L.T., Lu J., Gao Z., Zhang B., McNutt M.A., Lu M., Anderson V.M., Gong E., Yu A.C., Lipkin W.I. H5N1 infection of the respiratory tract and beyond: a molecular pathology study. Lancet. 2007;370(9593):1137–1145. doi: 10.1016/S0140-6736(07)61515-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 36.Leone G., van Schijndel H., van Gemen B., Kramer F.R., Schoen C.D. Molecular beacon probes combined with amplification by NASBA enable homogeneous, real-time detection of RNA. Nucleic Acids Res. 1998;26(9):2150–2155. doi: 10.1093/nar/26.9.2150. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 37.Loens K., Ieven M., Ursi D., De Laat C., Sillekens P., Oudshoorn P., Goossens H. Improved detection of rhinoviruses by nucleic acid sequence-based amplification after nucleotide sequence determination of the 5′ noncoding regions of additional rhinovirus strains. J Clin Microbiol. 2003;41(5):1971–1976. doi: 10.1128/JCM.41.5.1971-1976.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 38.Notomi T., Okayama H., Masubuchi H., Yonekawa T., Watanabe K., Amino N., Hase T. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res. 2000;28(12):E63. doi: 10.1093/nar/28.12.e63. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 39.Nagamine K., Hase T., Notomi T. Accelerated reaction by loopmediated isothermal amplification using loop primers. Mol Cell Probes. 2002;16(3):223–229. doi: 10.1006/mcpr.2002.0415. [DOI] [PubMed] [Google Scholar]
- 40.Tomita N., Mori Y., Kanda H., Notomi T. Loop-mediated isothermal amplification (LAMP) of gene sequences and simple visual detection of products. Nat Protoc. 2008;3(5):877–882. doi: 10.1038/nprot.2008.57. [DOI] [PubMed] [Google Scholar]
- 41.Mori Y., Kitao M., Tomita N., Notomi T. Real-time turbidimetry of LAMP reaction for quantifying template DNA. J Biochem Biophys Methods. 2004;59(2):145–157. doi: 10.1016/j.jbbm.2003.12.005. [DOI] [PubMed] [Google Scholar]
- 42.Karlsen F., Steen H.B., Nesland J.M. SYBR green I DNA staining increases the detection sensitivity of viruses by polymerase chain reaction. J Virol Methods. 1995;55(1):153–156. doi: 10.1016/0166-0934(95)00053-W. [DOI] [PubMed] [Google Scholar]
- 43.Mori Y., Hirano T., Notomi T. Sequence specific visual detection of LAMP reactions by addition of cationic polymers. BMC Biotechnol. 2006;6(1):3. doi: 10.1186/1472-6750-6-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 44.Romano J.W., Shurtliff R.N., Dobratz E., Gibson A., Hickman K., Markham P.D., Pal R. Quantitative evaluation of simian immunodeficiency virus infection using NASBA technology. J Virol Methods. 2000;86(1):61–70. doi: 10.1016/S0166-0934(99)00184-6. [DOI] [PubMed] [Google Scholar]
- 45.Lau L.T., Reid S.M., King D.P., Lau A.M., Shaw A.E., Ferris N.P., Yu A.C. Detection of foot-and-mouth disease virus by nucleic acid sequence-based amplification (NASBA) Vet Microbiol. 2008;126(1-3):101–110. doi: 10.1016/j.vetmic.2007.07.008. [DOI] [PubMed] [Google Scholar]
- 46.Collins R.A., Ko L.S., So K.L., Ellis T., Lau L.T., Yu A.C. Detection of highly pathogenic and low pathogenic avian influenza subtype H5 (Eurasian lineage) using NASBA. J Virol Methods. 2002;103(2):213–225. doi: 10.1016/S0166-0934(02)00034-4. [DOI] [PubMed] [Google Scholar]
- 47.Romano J.W., Shurtliff R.N., Grace M., Lee E.M., Ginocchio C., Kaplan M., Pal R. Macrophage-derived chemokine gene expression in human and macaque cells: mRNA quantification using NASBA technology. Cytokine. 2001;13(6):325–333. doi: 10.1006/cyto.2001.0843. [DOI] [PubMed] [Google Scholar]
- 48.Simpkins S.A., Chan A.B., Hays J., Pöpping B., Cook N. An RNA transcription-based amplification technique (NASBA) for the detection of viable Salmonella enterica. Lett Appl Microbiol. 2000;30(1):75–79. doi: 10.1046/j.1472-765x.2000.00670.x. [DOI] [PubMed] [Google Scholar]
- 49.Mori Y., Notomi T. Loop-mediated isothermal amplification (LAMP): a rapid, accurate, and cost-effective diagnostic method for infectious diseases. J Infect Chemother. 2009;15(2):62–69. doi: 10.1007/s10156-009-0669-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 50.Hara-Kudo Y., Yoshino M., Kojima T., Ikedo M. Loop-mediated isothermal amplification for the rapid detection of Salmonella. FEMS Microbiol Lett. 2005;253(1):155–161. doi: 10.1016/j.femsle.2005.09.032. [DOI] [PubMed] [Google Scholar]
- 51.Hill J., Beriwal S., Chandra I., Paul V.K., Kapil A., Singh T., Wadowsky R.M., Singh V., Goyal A., Jahnukainen T., Johnson J.R., Tarr P.I., Vats A. Loop-mediated isothermal amplification assay for rapid detection of common strains of Escherichia coli. J Clin Microbiol. 2008;46(8):2800–2804. doi: 10.1128/JCM.00152-08. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 52.Iturriza-Gómara M., Xerry J., Gallimore C.I., Dockery C., Gray J. Evaluation of the Loopamp (loop-mediated isothermal amplification) kit for detecting Norovirus RNA in faecal samples. J Clin Virol. 2008;42(4):389–393. doi: 10.1016/j.jcv.2008.02.012. [DOI] [PubMed] [Google Scholar]
- 53.Poon L.L., Leung C.S., Tashiro M., Chan K.H., Wong B.W., Yuen K.Y., Guan Y., Peiris J.S. Rapid detection of the severe acute respiratory syndrome (SARS) coronavirus by a loop-mediated isothermal amplification assay. Clin Chem. 2004;50(6):1050–1052. doi: 10.1373/clinchem.2004.032011. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 54.Imai M., Ninomiya A., Minekawa H., Notomi T., Ishizaki T., Tashiro M., Odagiri T. Development of H5-RT-LAMP (loop-mediated isothermal amplification) system for rapid diagnosis of H5 avian influenza virus infection. Vaccine. 2006;24(44–46):6679–6682. doi: 10.1016/j.vaccine.2006.05.046. [DOI] [PubMed] [Google Scholar]
- 55.Geojith G., Dhanasekaran S., Chandran S.P., Kenneth J. Efficacy of loop mediated isothermal amplification (LAMP) assay for the laboratory identification of Mycobacterium tuberculosis isolates in a resource limited setting. J Microbiol Methods. 2011;84(1):71–73. doi: 10.1016/j.mimet.2010.10.015. [DOI] [PubMed] [Google Scholar]
- 56.Ito M., Watanabe M., Nakagawa N., Ihara T., Okuno Y. Rapid detection and typing of influenza A and B by loop-mediated isothermal amplification: comparison with immunochromatography and virus isolation. J Virol Methods. 2006;135(2):272–275. doi: 10.1016/j.jviromet.2006.03.003. [DOI] [PubMed] [Google Scholar]
- 57.Shan S., Ko L.S., Collins R.A., Wu Z., Chen J., Chan K.Y., Xing J., Lau L.T., Yu A.C. Comparison of nucleic acid-based detection of avian influenza H5N1 with virus isolation. Biochem Biophys Res Commun. 2003;302(2):377–383. doi: 10.1016/S0006-291X(03)00165-7. [DOI] [PubMed] [Google Scholar]
- 58.Kaneko H., Kawana T., Fukushima E., Suzutani T. Tolerance of loop-mediated isothermal amplification to a culture medium and biological substances. J Biochem Biophys Methods. 2007;70(3):499–501. doi: 10.1016/j.jbbm.2006.08.008. [DOI] [PubMed] [Google Scholar]
- 59.Lau L.T., Feng X.Y., Lam T.Y., Hui H.K., Yu A.C. Development of multiplex nucleic acid sequence-based amplification for detection of human respiratory tract viruses. J Virol Methods. 2010;168(1–2):251–254. doi: 10.1016/j.jviromet.2010.04.027. [DOI] [PubMed] [Google Scholar]
- 60.Loens K., Beck T., Ursi D., Overdijk M., Sillekens P., Goossens H., Ieven M. Evaluation of different nucleic acid amplification techniques for the detection of M. pneumoniae, C. pneumoniae and Legionella spp. in respiratory specimens from patients with community-acquired pneumonia. J Microbiol Methods. 2008;73(3):257–262. doi: 10.1016/j.mimet.2008.02.010. [DOI] [PubMed] [Google Scholar]
- 61.Loens K., Beck T., Ursi D., Overdijk M., Sillekens P., Goossens H., Ieven M. Development of real-time multiplex nucleic acid sequence-based amplification for detection of Mycoplasma pneumoniae, Chlamydophila pneumoniae, and Legionella spp. in respiratory specimens. J Clin Microbiol. 2008;46(1):185–191. doi: 10.1128/JCM.00447-07. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 62.Mader A., Riehle U., Brandstetter T., Stickeler E., zur Hausen A., Rühe J. Microarray-based amplification and detection of RNA by nucleic acid sequence based amplification. Anal Bioanal Chem. 2010;397(8):3533–3541. doi: 10.1007/s00216-010-3892-4. [DOI] [PubMed] [Google Scholar]
- 63.Iseki H., Alhassan A., Ohta N., Thekisoe O.M., Yokoyama N., Inoue N., Nambota A., Yasuda J., Igarashi I. Development of a multiplex loop-mediated isothermal amplification (mLAMP) method for the simultaneous detection of bovine Babesia parasites. J Microbiol Methods. 2007;71(3):281–287. doi: 10.1016/j.mimet.2007.09.019. [DOI] [PubMed] [Google Scholar]
- 64.Lam L., Sakakihara S., Ishizuka K., Takeuchi S., Arata H.F., Fujita H., Noji H. Loop-mediated isothermal amplification of a single DNA molecule in polyacrylamide gel-based microchamber. Biomed Microdevices. 2008;10(4):539–546. doi: 10.1007/s10544-008-9163-x. [DOI] [PubMed] [Google Scholar]
- 65.Niemz A., Ferguson T.M., Boyle D.S. Point-of-care nucleic acid testing for infectious diseases. Trends Biotechnol. 2011;29(5):240–250. doi: 10.1016/j.tibtech.2011.01.007. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 66.Southern E.M. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol. 1975;98(3):503–517. doi: 10.1016/S0022-2836(75)80083-0. [DOI] [PubMed] [Google Scholar]
- 67.Maskos U., Southern E.M. Oligonucleotide hybridizations on glass supports: a novel linker for oligonucleotide synthesis and hybridization properties of oligonucleotides synthesised in situ. Nucleic Acids Res. 1992;20(7):1679–1684. doi: 10.1093/nar/20.7.1679. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 68.Kafatos F.C., Jones C.W., Efstratiadis A. Determination of nucleic acid sequence homologies and relative concentrations by a dot hybridization procedure. Nucleic Acids Res. 1979;7(6):1541–1552. doi: 10.1093/nar/7.6.1541. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 69.Saiki R.K., Walsh P.S., Levenson C.H., Erlich H.A. Genetic analysis of amplified DNA with immobilized sequence-specific oligonucleotide probes. Proc Natl Acad Sci USA. 1989;86(16):6230–6234. doi: 10.1073/pnas.86.16.6230. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 70.Bains W., Smith G.C. A novel method for nucleic acid sequence determination. J Theor Biol. 1988;135(3):303–307. doi: 10.1016/S0022-5193(88)80246-7. [DOI] [PubMed] [Google Scholar]
- 71.Yamada M., Kato K., Shindo K., Nomizu M., Sakairi N., Yamamoto H., Nishi N. Immobilization of DNA by UV irradiation and its utilization as functional materials. Nucleic Acids Symp Ser. 1999;42(1):103–104. doi: 10.1093/nass/42.1.103. [DOI] [PubMed] [Google Scholar]
- 72.Müller UR, Nicolau DV. Microarray technology and its applications. Berlin: Springer, 2005: xxii–379
- 73.Schena M., Shalon D., Davis R.W., Brown P.O. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science. 1995;270(5235):467–470. doi: 10.1126/science.270.5235.467. [DOI] [PubMed] [Google Scholar]
- 74.Allemand J.F., Bensimon D., Jullien L., Bensimon A., Croquette V. pH-dependent specific binding and combing of DNA. Biophys J. 1997;73(4):2064–2070. doi: 10.1016/S0006-3495(97)78236-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 75.Henke L., Piunno P.A.E., McClure A.C., Krull U.J. Covalent immobilization of single-stranded DNA onto optical fibers using various linkers. Anal Chim Acta. 1997;344(3):201–213. doi: 10.1016/S0003-2670(97)00056-1. [DOI] [Google Scholar]
- 76.Henke L., Krull U.J. Immobilization technologies used for nucleic acid biosensors: a review. Can J Anal Sci Spectros. 1999;44(2):61–70. [Google Scholar]
- 77.Piunno PAE, Hanafi-Bagby D, Henke L, Krull Ulrich J. A critical review of nucleic acid biosensor and chip-based oligonucleotide array technologies. In: Chemical and Biological Sensors for Environmental Monitoring. American Chemical Society, 2000: 257–291
- 78.Palchetti I, Mascini M, Wittmann C. Electrochemical adsorption technique for immobilization of single-stranded oligonucleotides onto carbon screen-printed electrodes immobilisation of DNA on chips II. Vol. 261. Berlin / Heidelberg: Springer, 2005: 27–43
- 79.Algar WR, Lim Y, Massey M, Wong AKY, Ye Y, Krull UJ. Assembly of oligonucleotide probes on surfaces for development of biosensors and biochips. In: Soft Nanomaterials. American Scientific Publishers, 2009: 1–66
- 80.Masarik M., Kizek R., Kramer K.J., Billova S., Brazdova M., Vacek J., Bailey M., Jelen F., Howard J.A. Application of avidin-biotin technology and adsorptive transfer stripping square-wave voltammetry for detection of DNA hybridization and avidin in transgenic avidin maize. Anal Chem. 2003;75(11):2663–2669. doi: 10.1021/ac020788z. [DOI] [PubMed] [Google Scholar]
- 81.Nuzzo R.G., Allara D.L. Adsorption of bifunctional organic disulfides on gold surfaces. J Am Chem Soc. 1983;105(13):4481–4483. doi: 10.1021/ja00351a063. [DOI] [Google Scholar]
- 82.Wink T., van Zuilen S.J., Bult A., van Bennkom W.P. Self-assembled monolayers for biosensors. Analyst (Lond) 1997;122(4):43R–50R. doi: 10.1039/a606964i. [DOI] [PubMed] [Google Scholar]
- 83.Ruediger D, Daniel H, Rajendra R, Alistair R. The role of substrates in microarray experimentation and how to choose the correct coating for microarraying. In: Microarray Innovations. CRC Press, 2009: 53–69
- 84.Okamoto T., Suzuki T., Yamamoto N. Microarray fabrication with covalent attachment of DNA using bubble jet technology. Nat Biotechnol. 2000;18(4):438–441. doi: 10.1038/74507. [DOI] [PubMed] [Google Scholar]
- 85.de Gans B.J., Schubert U.S. Inkjet printing of well-defined polymer dots and arrays. Langmuir. 2004;20(18):7789–7793. doi: 10.1021/la049469o. [DOI] [PubMed] [Google Scholar]
- 86.Fodor S.P., Read J.L., Pirrung M.C., Stryer L., Lu A.T., Solas D. Lightdirected, spatially addressable parallel chemical synthesis. Science. 1991;251(4995):767–773. doi: 10.1126/science.1990438. [DOI] [PubMed] [Google Scholar]
- 87.Fodor S.P.A. DNA Sequencing: massively parallel genomics. Science. 1997;277(5324):393–395. doi: 10.1126/science.277.5324.393. [DOI] [Google Scholar]
- 88.May G.S. Fundamentals of semiconductor fabrication. New York, Chichester: Wiley; 2003. p. 320. [Google Scholar]
- 89.Ahrendt S.A., Halachmi S., Chow J.T., Wu L., Halachmi N., Yang S.C., Wehage S., Jen J., Sidransky D. Rapid p53 sequence analysis in primary lung cancer using an oligonucleotide probe array. Proc Natl Acad Sci USA. 1999;96(13):7382–7387. doi: 10.1073/pnas.96.13.7382. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 90.Shen Y., Miller D.T., Cheung S.W., Lip V., Sheng X., Tomaszewicz K., Shao H., Fang H., Tang H.S., Irons M., Walsh C.A., Platt O., Gusella J.F., Wu B.L. Development of a focused oligonucleotide-array comparative genomic hybridization chip for clinical diagnosis of genomic imbalance. Clin Chem. 2007;53(12):2051–2059. doi: 10.1373/clinchem.2007.090290. [DOI] [PubMed] [Google Scholar]
- 91.Wang Y., Klijn J.G., Zhang Y., Sieuwerts A.M., Look M.P., Yang F., Talantov D., Timmermans M., Meijer-van Gelder M.E., Yu J., Jatkoe T., Berns E.M., Atkins D., Foekens J.A. Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer. Lancet. 2005;365(9460):671–679. doi: 10.1016/S0140-6736(05)17947-1. [DOI] [PubMed] [Google Scholar]
- 92.Wang D., Coscoy L., Zylberberg M., Avila P.C., Boushey H.A., Ganem D., DeRisi J.L. Microarray-based detection and genotyping of viral pathogens. Proc Natl Acad Sci USA. 2002;99(24):15687–15692. doi: 10.1073/pnas.242579699. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 93.Chiu C.Y., Rouskin S., Koshy A., Urisman A., Fischer K., Yagi S., Schnurr D., Eckburg P.B., Tompkins L.S., Blackburn B.G., Merker J.D., Patterson B.K., Ganem D., DeRisi J.L. Microarray detection of human parainfluenza virus 4 infection associated with respiratory failure in an immunocompetent adult. Clin Infect Dis. 2006;43(8):e71–e76. doi: 10.1086/507896. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 94.Chen E.C., Miller S.A., DeRisi J.L., Chiu C.Y. Using a pan-viral microarray assay (Virochip) to screen clinical samples for viral pathogens. J Vis Exp. 2011;50:2536. doi: 10.3791/2536. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 95.Wilson W.J., Strout C.L., DeSantis T.Z., Stilwell J.L., Carrano A.V., Andersen G.L. Sequence-specific identification of 18 pathogenic microorganisms using microarray technology. Mol Cell Probes. 2002;16(2):119–127. doi: 10.1006/mcpr.2001.0397. [DOI] [PubMed] [Google Scholar]
- 96.Schick B., Wemmert S., Willnecker V., Dlugaiczyk J., Nicolai P., Siwiec H., Thiel C.T., Rauch A., Wendler O. Genome-wide copy number profiling using a 100K SNP array reveals novel diseaserelated genes BORIS and TSHZ1 in juvenile angiofibroma. Int J Oncol. 2011;39(5):1143–1151. doi: 10.3892/ijo.2011.1166. [DOI] [PubMed] [Google Scholar]
- 97.Tuefferd M., de Bondt A., Van den Wyngaert I., Talloen W., Göhlmann H. Microarray profiling of DNA extracted from FFPE tissues using SNP 6.0 Affymetrix platform. Methods Mol Biol. 2011;724:147–160. doi: 10.1007/978-1-61779-055-3_10. [DOI] [PubMed] [Google Scholar]
- 98.Herring C.D., Palsson B.O. An evaluation of Comparative Genome Sequencing (CGS) by comparing two previously-sequenced bacterial genomes. BMC Genomics. 2007;8(1):274. doi: 10.1186/1471-2164-8-274. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 99.Chui J.V., Weisfeld-Adams J.D., Tepperberg J., Mehta L. Clinical and molecular characterization of chromosome 7p22.1 microduplication detected by array CGH. Am J Med Genet A. 2011;155A(10):2508–2511. doi: 10.1002/ajmg.a.34180. [DOI] [PubMed] [Google Scholar]
- 100.Panzeri E., Conconi D., Antolini L., Redaelli S., Valsecchi M.G., Bovo G., Pallotti F., Viganò P., Strada G., Dalprà L., Bentivegna A. Chromosomal aberrations in bladder cancer: fresh versus formalin fixed paraffin embedded tissue and targeted FISH versus wide microarray-based CGH analysis. PLoS ONE. 2011;6(9):e24237. doi: 10.1371/journal.pone.0024237. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 101.Gorski J.J., Savage K.I., Mulligan J.M., McDade S.S., Blayney J.K., Ge Z., Harkin D.P. Profiling of the BRCA1 transcriptome through microarray and ChIP-chip analysis. Nucleic Acids Research. 2011;39(22):9536–9548. doi: 10.1093/nar/gkr679. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 102.Schwartzman J., Mongoue-Tchokote S., Gibbs A., Gao L., Corless C.L., Jin J., Zarour L., Higano C., True L.D., Vessella R.L., Wilmot B., Bottomly D., McWeeney S.K., Bova G.S., Partin A.W., Mori M., Alumkal J. A DNA methylation microarray-based study identifies ERG as a gene commonly methylated in prostate cancer. Epigenetics. 2011;6(10):1248–1256. doi: 10.4161/epi.6.10.17727. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 103.Kong B.W., Song J.J., Lee J.Y., Hargis B.M., Wing T., Lassiter K., Bottje W. Gene expression in breast muscle associated with feed efficiency in a single male broiler line using a chicken 44K oligo microarray. I. Top differentially expressed genes. Poult Sci. 2011;90(11):2535–2547. doi: 10.3382/ps.2011-01435. [DOI] [PubMed] [Google Scholar]
- 104.Takahashi H., Tainaka H., Umezawa M., Takeda K., Tanaka H., Nishimune Y., Oshio S. Evaluation of testicular toxicology of doxorubicin based on microarray analysis of testicular specific gene expression. J Toxicol Sci. 2011;36(5):559–567. doi: 10.2131/jts.36.559. [DOI] [PubMed] [Google Scholar]
- 105.Fixe F., Cabeça R., Chu V., Prazeres D.M.F., Ferreira G.N.M., Conde J.P. Electric-field-pulse-assisted covalent immobilization of DNA in the nanosecond time scale. Appl Phys Lett. 2003;83(7):1465–1467. doi: 10.1063/1.1594839. [DOI] [Google Scholar]
- 106.Edman C.F., Raymond D.E., Wu D.J., Tu E., Sosnowski R.G., Butler W.F., Nerenberg M., Heller M.J. Electric field directed nucleic acid hybridization on microchips. Nucleic Acids Res. 1997;25(24):4907–4914. doi: 10.1093/nar/25.24.4907. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 107.Moreno-Hagelsieb L., Foultier B., Laurent G., Pampin R., Remacle J., Raskin J.P., Flandre D. Electrical detection of DNA hybridization: three extraction techniques based on interdigitated Al/Al2O3 capacitors. Biosens Bioelectron. 2007;22(9–10):2199–2207. doi: 10.1016/j.bios.2006.10.024. [DOI] [PubMed] [Google Scholar]
- 108.Fixe F., Chu V., Prazeres D.M., Conde J.P. An on-chip thin film photodetector for the quantification of DNA probes and targets in microarrays. Nucleic Acids Res. 2004;32(9):e70. doi: 10.1093/nar/gnh066. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 109.Zheng G., Patolsky F., Cui Y., Wang W.U., Lieber C.M. Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nat Biotechnol. 2005;23(10):1294–1301. doi: 10.1038/nbt1138. [DOI] [PubMed] [Google Scholar]
- 110.Gao A., Lu N., Dai P., Li T., Pei H., Gao X., Gong Y., Wang Y., Fan C. Silicon-nanowire-based CMOS-compatible field-effect transistor nanosensors for ultrasensitive electrical detection of nucleic acids. Nano Lett. 2011;11(9):3974–3978. doi: 10.1021/nl202303y. [DOI] [PubMed] [Google Scholar]
- 111.Varadan VK, Jiang X, Varadan VV. Microstereomicrolithography and other fabrication techniques for 3D MEMS. Chichester: Wiley, 2001:xiii–260
- 112.Ng J.M., Gitlin I., Stroock A.D., Whitesides G.M. Components for integrated poly(dimethylsiloxane) microfluidic systems. Electrophoresis. 2002;23(20):3461–3473. doi: 10.1002/1522-2683(200210)23:20<3461::AID-ELPS3461>3.0.CO;2-8. [DOI] [PubMed] [Google Scholar]
- 113.Lin M.C., Chu C.J., Tsai L.C., Lin H.Y., Wu C.S., Wu Y.P., Wu Y.N., Shieh D.B., Su Y.W., Chen C.D. Control and detection of organosilane polarization on nanowire field-effect transistors. Nano Lett. 2007;7(12):3656–3661. doi: 10.1021/nl0719170. [DOI] [Google Scholar]
- 114.Castillo-Salgado C. Trends and directions of global public health surveillance. Epidemiol Rev. 2010;32(1):93–109. doi: 10.1093/epirev/mxq008. [DOI] [PubMed] [Google Scholar]
- 115.Chan K.H., Lai S.T., Poon L.L., Guan Y., Yuen K.Y., Peiris J.S. Analytical sensitivity of rapid influenza antigen detection tests for swine-origin influenza virus (H1N1) J Clin Virol. 2009;45(3):205–207. doi: 10.1016/j.jcv.2009.05.034. [DOI] [PubMed] [Google Scholar]
- 116.Ngaosuwankul N., Noisumdaeng P., Komolsiri P., Pooruk P., Chokephaibulkit K., Chotpitayasunondh T., Sangsajja C., Chuchottaworn C., Farrar J., Puthavathana P. Influenza A viral loads in respiratory samples collected from patients infected with pandemic H1N1, seasonal H1N1 and H3N2 viruses. Virol J. 2010;7(1):75. doi: 10.1186/1743-422X-7-75. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 117.Lee N., Chan P.K., Hui D.S., Rainer T.H., Wong E., Choi K.W., Lui G.C., Wong B.C., Wong R.Y., Lam W.Y., Chu I.M., Lai R.W., Cockram C.S., Sung J.J. Viral loads and duration of viral shedding in adult patients hospitalized with influenza. J Infect Dis. 2009;200(4):492–500. doi: 10.1086/600383. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 118.Cagnin S., Caraballo M., Guiducci C., Martini P., Ross M., SantaAna M., Danley D., West T., Lanfranchi G. Overview of electrochemical DNA biosensors: new approaches to detect the expression of life. Sensors (Basel Switzerland) 2009;9(4):3122–3148. doi: 10.3390/s90403122. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 119.Peterson A.W., Heaton R.J., Georgiadis R.M. The effect of surface probe density on DNA hybridization. Nucleic Acids Res. 2001;29(24):5163–5168. doi: 10.1093/nar/29.24.5163. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 120.Fuchs J., Fiche J.B., Buhot A., Calemczuk R., Livache T. Salt concentration effects on equilibrium melting curves from DNA microarrays. Biophys J. 2010;99(6):1886–1895. doi: 10.1016/j.bpj.2010.07.002. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 121.Nakano S., Fujimoto M., Hara H., Sugimoto N. Nucleic acid duplex stability: influence of base composition on cation effects. Nucleic Acids Res. 1999;27(14):2957–2965. doi: 10.1093/nar/27.14.2957. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 122.Halperin A., Buhot A., Zhulina E.B. Hybridization at a surface: the role of spacers in DNA microarrays. Langmuir. 2006;22(26):11290–11304. doi: 10.1021/la0616606. [DOI] [PubMed] [Google Scholar]
- 123.Vanderhoeven J., Pappaert K., Dutta B., Van Hummelen P., Desmet G. DNA microarray enhancement using a continuously and discontinuously rotating microchamber. Anal Chem. 2005;77(14):4474–4480. doi: 10.1021/ac0502091. [DOI] [PubMed] [Google Scholar]
- 124.Chen C.C., Ku W.C., Chiu S.K., Tzeng C.M. Deoxyribonucleic acid hybridization acceleration by photovoltaic effect. Appl Phys Lett. 2006;89(23):233902. doi: 10.1063/1.2397539. [DOI] [Google Scholar]
- 125.Sosnowski R.G., Tu E., Butler W.F., O’Connell J.P., Heller M.J. Rapid determination of single base mismatch mutations in DNA hybrids by direct electric field control. Proc Natl Acad Sci USA. 1997;94(4):1119–1123. doi: 10.1073/pnas.94.4.1119. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 126.Heller M.J., Forster A.H., Tu E. Active microeletronic chip devices which utilize controlled electrophoretic fields for multiplex DNA hybridization and other genomic applications. Electrophoresis. 2000;21(1):157–164. doi: 10.1002/(SICI)1522-2683(20000101)21:1<157::AID-ELPS157>3.0.CO;2-E. [DOI] [PubMed] [Google Scholar]
- 127.Fixe F., Chu V., Prazeres D.M., Conde J.P. Single base mismatch detection by microsecond voltage pulses. Biosens Bioelectron. 2005;21(6):888–893. doi: 10.1016/j.bios.2005.02.011. [DOI] [PubMed] [Google Scholar]
- 128.Fixe F., Branz H.M., Louro N., Chu V., Prazeres D.M., Conde J.P. Electric-field assisted immobilization and hybridization of DNA oligomers on thin-film microchips. Nanotechnology. 2005;16(10):2061–2071. doi: 10.1088/0957-4484/16/10/014. [DOI] [PubMed] [Google Scholar]
- 129.Fixe F., Branz H.M., Louro N., Chu V., Prazeres D.M., Conde J.P. Immobilization and hybridization by single sub-millisecond electric field pulses, for pixel-addressed DNA microarrays. Biosens Bioelectron. 2004;19(12):1591–1597. doi: 10.1016/j.bios.2003.12.012. [DOI] [PubMed] [Google Scholar]
- 130.Erickson D., Liu X., Krull U., Li D. Electrokinetically controlled DNA hybridization microfluidic chip enabling rapid target analysis. Anal Chem. 2004;76(24):7269–7277. doi: 10.1021/ac049396d. [DOI] [PubMed] [Google Scholar]
- 131.Swami N., Chou C.F., Ramamurthy V., Chaurey V. Enhancing DNA hybridization kinetics through constriction-based dielectrophoresis. Lab Chip. 2009;9(22):3212–3220. doi: 10.1039/b910598k. [DOI] [PubMed] [Google Scholar]
- 132.Creager S., Yu C.J., Bamdad C., O’Connor S., MacLean T., Lam E., Chong Y., Olsen G.T., Luo J., Gozin M., Kayyem J.F. Electron transfer at electrodes through conjugated “molecular wire” bridges. J Am Chem Soc. 1999;121(5):1059–1064. doi: 10.1021/ja983204c. [DOI] [Google Scholar]
- 133.Peterlinz K.A., Georgiadis R.M., Herne T.M., Tarlov M.J. Observation of hybridization and dehybridization of thiol-tethered DNA using two-color surface plasmon resonance spectroscopy. J Am Chem Soc. 1997;119(14):3401–3402. doi: 10.1021/ja964326c. [DOI] [Google Scholar]
- 134.Taton T.A., Mirkin C.A., Letsinger R.L. Scanometric DNA array detection with nanoparticle probes. Science. 2000;289(5485):1757–1760. doi: 10.1126/science.289.5485.1757. [DOI] [PubMed] [Google Scholar]
- 135.Robelek R., Niu L., Schmid E.L., Knoll W. Multiplexed hybridization detection of quantum dot-conjugated DNA sequences using surface plasmon enhanced fluorescence microscopy and spectrometry. Anal Chem. 2004;76(20):6160–6165. doi: 10.1021/ac049351c. [DOI] [PubMed] [Google Scholar]