Abstract
The subgenomic mRNA transcription and genomic replication of the porcine reproductive and respiratory syndrome virus (PRRSV) are directed by the viral replicase. The replicase is expressed in the form of two polyproteins and is subsequently processed into smaller nonstructural proteins (nsps). nsp9, containing the viral replicase, has characteristic sequence motifs conserved among the RNA-dependent RNA polymerases (RdRp) of positive-strand (PS) RNA viruses. To test whether the conserved SDD motif can tolerate other conserved motifs of RNA viruses and the influence of every residue on RdRp catalytic activity, many amino acids substitutions were introduced into it. Only one nsp9 substitution, of serine by glycine (S3050G), could rescue mutant viruses. The rescued virus was genetically stable. Alteration of either aspartate residue was not tolerated, destroyed the polymerase activity, and abolished virus transcription, but did not eliminate virus replication. We also found that the SDD motif was essentially invariant for the signature sequence of PRRSV RdRp. It could not accommodate other conserved motifs found in other RNA viral polymerases, except the GDD motif, which is conserved in all the other PS RNA viruses. These findings indicated that nidoviruses are evolutionarily related to other PS RNA viruses. Our studies support the idea that the two aspartate residues of the SDD motif are critical and essential for PRRSV transcription and represent a sequence variant of the GDD motif in PS RNA viruses.
Keywords: SDD, RdRp, PRRSV, nidoviruses, replication, evolution
Footnotes
This article is published with open access at Springerlink.com
References
- 1.O’Reilly E. K., Kao C. C. Analysis of RNA-dependent RNA polymerase structure and function as guided by known polymerase structures and computer predictions of secondary structure. Virology. 1998;252:287–303. doi: 10.1006/viro.1998.9463. [DOI] [PubMed] [Google Scholar]
- 2.Wang X., Gillam S. Mutations in the GDD motif of rubella virus putative RNA-dependent RNA polymerase affect virus replication. Virology. 2001;285:322–331. doi: 10.1006/viro.2001.0939. [DOI] [PubMed] [Google Scholar]
- 3.van marle G., van Dinten L. C., Spaan W. J. M., et al. Characterization of an equine arteritis virus replicase mutant defective in subgenomic mRNA synthesis. J Virol. 1999;73:5274–5281. doi: 10.1128/jvi.73.7.5274-5281.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 4.Gorbalenya A. E., Enjuanes L., Ziebuhr J., et al. Nidovirales: evolving the largest RNA virus genome. Virus Res. 2006;117:17–37. doi: 10.1016/j.virusres.2006.01.017. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 5.Kamer G., Argos P. Primary structural comparison of RNA-dependent polymerases from plant, animal and bacterial viruses. Nucleic Acids Res. 1984;12:7269–7282. doi: 10.1093/nar/12.18.7269. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 6.Gallei A., Widauer S., Thiel H. J., et al. Mutations in the palm region of a plus-strand RNA virus polymerase result in attenuated phenotype. J Gen Virol. 2006;87:3631–3636. doi: 10.1099/vir.0.81809-0. [DOI] [PubMed] [Google Scholar]
- 7.Sabanadzovic S., Nina A. G. S., Gorbalenya A. E. Permutation of the active site of putative RNA-dependent RNA polymerase in a newly identified species of plant alpha-like virus. Virology. 2009;394:1–7. doi: 10.1016/j.virol.2009.08.006. [DOI] [PubMed] [Google Scholar]
- 8.Okura I., Horiike N., Michitaka K., et al. Effect of mutation in the hepatitis C virus nonstructural 5B region on HCV replication. J Gas. 2004;39:449–454. doi: 10.1007/s00535-003-1321-6. [DOI] [PubMed] [Google Scholar]
- 9.Tomar S., Hardy R. W., Smith J. L., et al. Catalytic core of alphavirus nonstructural protein nsp4 possesses terminal adenylyltransferase activity. J Virol. 2006;80:9962–9969. doi: 10.1128/JVI.01067-06. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 10.Tao Y, Ye Q. RNA virus replication complexes. PLoS Pathog, 2010, 6 [DOI] [PMC free article] [PubMed]
- 11.Jablonski S. A., Morrow C. D. Mutation of the aspartic acid residues of the GDD sequence motif of poliovirus RNA-dependent RNA polymerase results in enzymes with altered metal ion requirements for activity. J Virol. 1995;69:1532–1539. doi: 10.1128/jvi.69.3.1532-1539.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 12.Fullerton S. W. B., Blaschke M., Coutard B., et al. Structural and functional characterization of sapovirus RNA-dependent RNA polymerase. J Virol. 2007;81:1858–1871. doi: 10.1128/JVI.01462-06. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 13.Snijder E. J., Meulenberg J. J. M. The molecular biology of arteriviruses. J Gen Virol. 1998;79:961–979. doi: 10.1099/0022-1317-79-5-961. [DOI] [PubMed] [Google Scholar]
- 14.Plagemann P. G. W. Porcine reproductive and respiratory syndrome virus: origin hypothesis. Emerg Infect Dis. 2003;9:903–908. doi: 10.3201/eid0908.030232. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 15.Beerens N., Selisko B., Ricagno S., et al. De novo initiation of RNA synthesis by the arterivirus RNA-dependent RNA polymerase. J Virol. 2007;81:8384–8395. doi: 10.1128/JVI.00564-07. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 16.Sánchez A. B., De La Torre J. C. Genetic and biochemical evidence for an oligomeric structure of the functional L polymerase of the prototypic arenavirus lymphocytic choriomeningitis virus. J Virol. 2005;79:7262–7268. doi: 10.1128/JVI.79.11.7262-7268.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 17.Sleat D. E., Banerjee A. K. Transcriptional activity and mutational analysis of recombinant vesicular stomatitis virus RNA polymerase. J Virol. 1993;67:1334–1339. doi: 10.1128/jvi.67.3.1334-1339.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 18.Biswas S. K., Nayak D. P. Mutational analysis of the conserved motifs of influenza A virus polymerase basic protein 1. J Virol. 1994;68:1819–1826. doi: 10.1128/jvi.68.3.1819-1826.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 19.Zamoto-Niikura A., Terasaki K., Ikegami T., et al. Rift valley fever virus L protein forms a biologically active oligomer. J Virol. 2009;83:12779–12789. doi: 10.1128/JVI.01310-09. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 20.Boonrod K., Chotewutmontri S., Galetzka D., et al. Analysis of tombusvirus revertants to identify essential amino acid residues within RNA dependent RNA polymerase motifs. J Gen Virol. 2005;86:823–826. doi: 10.1099/vir.0.80625-0. [DOI] [PubMed] [Google Scholar]
- 21.Wang Y., Xiao M., Chen J., et al. Mutational analysis of the GDD sequence motif of classical swine fever virus RNA-dependent RNA polymerases. Virus Genes. 2007;34:63–65. doi: 10.1007/s11262-006-0001-z. [DOI] [PubMed] [Google Scholar]
- 22.Vazquez A. L., Alonso J. M. M., Parra F. Mutation analysis of the GDD sequence motif of a calicivirus RNA-dependent RNA polymerase. J Virol. 2000;74:3888–3891. doi: 10.1128/JVI.74.8.3888-3891.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 23.Velthuis A. J. W., Arnold J. J., Cameron C. E., et al. The RNA polymerase activity of SARS-coronavirus nsp12 is primer dependent. Nucleic Acids Res. 2010;38:203–214. doi: 10.1093/nar/gkp904. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 24.Ziebuhr J., Snijder E. J., Gorbalenya A. E. Virus-encoded proteinases and proteolytic processing in the nidovirales. J Gen Virol. 2000;81:853–879. doi: 10.1099/0022-1317-81-4-853. [DOI] [PubMed] [Google Scholar]
- 25.Music N., Gagnon C. A. The role of porcine reproductive and respiratory syndrome (PRRS) virus structural and non-structural proteins in virus pathogenesis. Anim Health Res Rev. 2010;11:135–163. doi: 10.1017/S1466252310000034. [DOI] [PubMed] [Google Scholar]
- 26.Fang Y., Snijder E. J. The PRRSV replicase: exploring the multifunctionality of an intriguing set of nonstructural proteins. Virus Res. 2010;154:61–76. doi: 10.1016/j.virusres.2010.07.030. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 27.van Dinten L. C., Rensen S., Gorbalenya A. E., et al. Proteolytic processing of the open reading frame 1b-encoded part of arterivirus replicase is mediated by nsp4 serine protease and is essential for virus replication. J Virol. 1999;73:2027–2037. doi: 10.1128/jvi.73.3.2027-2037.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 28.Yuan S., Wei Z. Construction of infectious cDNA clones of PRRSV: separation of coding regions for nonstructural and structural proteins. Sci China C: Life Sci. 2008;51:271–279. doi: 10.1007/s11427-008-0023-y. [DOI] [PubMed] [Google Scholar]
- 29.Sun Z., Liu C., Tan F., et al. Identification of dispensable nucleotide sequence in 3’ untranslated region of porcine reproductive and respiratory syndrome virus. Virus Res. 2010;154:38–47. doi: 10.1016/j.virusres.2010.08.027. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 30.Nedialkova D D, Gorbalenya A E, Snijder E J. Arterivirus nsp1 modulates the accumulation of minus-strand templates to control the relative abundance of viral mRNAs. PLoS Pathog, 2010, 6 [DOI] [PMC free article] [PubMed]
- 31.Pasternak A. O., Spaan W. J. M., Snijder E. J. Nidovirus transcription: how to make sense? J Gen Virol. 2006;87:1403–1421. doi: 10.1099/vir.0.81611-0. [DOI] [PubMed] [Google Scholar]
- 32.Fukushi S., Kojima S., Takai R., et al. Poly(A)- and primer-independent RNA polymerase of norovirus. J Virol. 2004;78:3889–3896. doi: 10.1128/JVI.78.8.3889-3896.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 33.Zhou L., Zhang J., Wang X., et al. Expression and characterization of RNA-dependent RNA polymerase of dendrolimus punctatus tetravirus. J Biochem Mol Biol. 2006;39:571–577. doi: 10.5483/BMBRep.2006.39.5.571. [DOI] [PubMed] [Google Scholar]
- 34.Friebe P., Harris E. The interplay of RNA elements in the dengue virus 5′ and 3′ ends required for viral RNA replication. J Virol. 2010;84:6103–6118. doi: 10.1128/JVI.02042-09. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 35.Masaki T., Suzuki R., Saeed M., et al. Production of infectious hepatitis C virus by using RNA polymerase mediated transcription. J Virol. 2010;84:5824–5835. doi: 10.1128/JVI.02397-09. [DOI] [PMC free article] [PubMed] [Google Scholar]