Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 2007 Feb 21;69(4):1355–1375. doi: 10.1007/s11538-006-9169-6

Impact of Travel Between Patches for Spatial Spread of Disease

Ying-Hen Hsieh 1, P van den Driessche 2,, Lin Wang 2
PMCID: PMC7088731  PMID: 17318677

Abstract

A multipatch model is proposed to study the impact of travel on the spatial spread of disease between patches with different level of disease prevalence. The basic reproduction number for the ith patch in isolation is obtained along with the basic reproduction number of the system of patches, ℜ0. Inequalities describing the relationship between these numbers are also given. For a two-patch model with one high prevalence patch and one low prevalence patch, results pertaining to the dependence of ℜ0 on the travel rates between the two patches are obtained. For parameter values relevant for influenza, these results show that, while banning travel of infectives from the low to the high prevalence patch always contributes to disease control, banning travel of symptomatic travelers only from the high to the low prevalence patch could adversely affect the containment of the outbreak under certain ranges of parameter values. Moreover, banning all travel of infected individuals from the high to the low prevalence patch could result in the low prevalence patch becoming diseasefree, while the high prevalence patch becomes even more disease-prevalent, with the resulting number of infectives in this patch alone exceeding the combined number of infectives in both patches without border control. Under the set of parameter values used, our results demonstrate that if border control is properly implemented, then it could contribute to stopping the spatial spread of disease between patches.

Keywords: Basic reproduction number, Border control, Influenza, Multipatch model, Spatial spread, Travel rate

References

  1. Arino, J., Jordan, R., van den Driessche, P., 2005. Quarantine in a multi-species epidemic model with spatial dynamics. Math. Biosci. [DOI] [PubMed]
  2. Arino J., van den Driessche P. A multi-city epidemic model. Math. Popul. Stud. 2003;10:175–193. doi: 10.1080/08898480306720. [DOI] [Google Scholar]
  3. Arino, J., van den Driessche, P., 2006. Disease spread in metapopulations. In: Nonlinear Dynamics and Evolution Equations. Vol. 48. Fields Institute Communications.
  4. Berman A., Plemmons R. J. Non-negative Matrices in the Mathematical Sciences. New York: Academic; 1979. [Google Scholar]
  5. Butler D. Doubts hang over source of bird flu spread. Nature. 2006;439:772. doi: 10.1038/439772a. [DOI] [PubMed] [Google Scholar]
  6. Cantrell R.S., Cosner C. Spatial Ecology via Reaction-Diffusion Equations. New York: Wiley; 2003. [Google Scholar]
  7. Chowell G., Rivas A.L., Hengartner N.W., Hyman J.M., Castillo-Chavez C. The role of spatial mixing in the spread of foot-and-mouth disease. Prev. Vet. Med. 2006;73:297–314. doi: 10.1016/j.prevetmed.2005.10.002. [DOI] [PubMed] [Google Scholar]
  8. Ferguson N.M., Cummings D.A.T., Cauchemez S., Fraser C., Riley S., Meeyai A., Iamsirithaworn S., Burke D. S. Strategies for containing an emerging influenza pandemic in southeast Asia. Nature. 2005;437:209–214. doi: 10.1038/nature04017. [DOI] [PubMed] [Google Scholar]
  9. Ferguson N.M., Cummings D.A.T., Fraser C., Cajka J.C., Cooley P.C., Burke D.S. Strategies for mitigating an influenza pandemic. Nature. 2006;442:448–452. doi: 10.1038/nature04795. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Fulford G.R., Roberts M.G., Heesterbeek J.A.P. The metapopulation dynamics of an infectious disease: Tuberculosis in possums. Theor. Popul. Biol. 2002;61:15–29. doi: 10.1006/tpbi.2001.1553. [DOI] [PubMed] [Google Scholar]
  11. Germann T.C., Kadau K., Longini I.M., Jr., Macken C.A. Mitigation strategies for pandemic influenza in the United States. PNAS. 2006;103:5935–5940. doi: 10.1073/pnas.0601266103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hastings A. Can spatial variation alone lead to selection for dispersal? Theor. Popul. Biol. 1983;24:244–251. doi: 10.1016/0040-5809(83)90027-8. [DOI] [Google Scholar]
  13. Horn R.A., Johnson C.R. Matrix Analysis. New York: Cambridge University Press; 1985. [Google Scholar]
  14. Horn R.A., Johnson C.R. Topics in Matrix Analysis. New York: Cambridge University Press; 1991. [Google Scholar]
  15. Hyman, J.M., LaForce, T., 2003. Modeling the spread of influenza among cities. In: Banks, H.T., Castillo-Chavez, C. (Eds.), Bioterrorism. SIAM, New York, pp. 211–236.
  16. McPeek M.A., Holt R.D. The evolution of dispersal in spatially and temporally varying environments. Am. Nat. 1992;140:1010–1027. doi: 10.1086/285453. [DOI] [Google Scholar]
  17. Ruan S., Wang W., Levin S.A. The effect of global travel on the spread of SARS. Math. Bios. Eng. 2006;3:205–218. doi: 10.3934/mbe.2006.3.205. [DOI] [PubMed] [Google Scholar]
  18. Salmani M., van den Driessche P. A model for disease transmission in a patchy environment. Disc. Cont. Dyna. Syst. Ser. B. 2006;6:185–202. [Google Scholar]
  19. Sattenspiel L., Herring D.A. Simulating the effect of quarantine on the spread of the 1918–1919 flu in central Canada. Bull. Math. Biol. 2003;65:1–26. doi: 10.1006/bulm.2002.0317. [DOI] [PubMed] [Google Scholar]
  20. Smith H.L., Waltman P. The Theory of the Chemostat. New York: Cambridge University Press; 1995. [Google Scholar]
  21. van den Driessche P., Watmough J. Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math. Biosci. 2002;180:29–48. doi: 10.1016/S0025-5564(02)00108-6. [DOI] [PubMed] [Google Scholar]
  22. Wang W., Mulone G. Threshold of disease transmission in a patchy environment. J. Math. Anal. Appl. 2003;285:321–335. doi: 10.1016/S0022-247X(03)00428-1. [DOI] [Google Scholar]
  23. Wang W., Zhao X.-Q. An epidemic model in a patchy environment. Math. Biosci. 2004;190:97–112. doi: 10.1016/j.mbs.2002.11.001. [DOI] [PubMed] [Google Scholar]
  24. Wang, W., Zhao, X.-Q., 2006. An epidemic model with population dispersal and infection period. SIAM J. Appl. Math.
  25. Summary of WHO measures related to international travel. Available at: http://www.who.int/csr/sars/travelupdate/en/. Accessed August 8, 2006.
  26. World Health Organization (WHO), 2006. Cumulative number of confirmed human cases of Avian influenza A/(H5N1) reported to WHO. Available at: http://www. who. int/csr/disease/avian_influenza/country/cases_table_2006_08_08/en/index.html. Accessed August 8.

Articles from Bulletin of Mathematical Biology are provided here courtesy of Nature Publishing Group

RESOURCES