Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 2003;48(23):2621–2625. doi: 10.1360/03wc464

Preparation, characterization and preliminary in vivo studies of inactivated SARS-CoV vaccine

Lin Tang 1,, Jian Wang 1,, Ede Qin 2, Qingyu Zhu 2, Man Yu 2, Zhifen Ding 3, Huiying Shi 3, Xiaojie Cheng 1, Caiping Wang 1, Guohui Chang 2, Shuangli Li, Xumin Zhang 1, Xishu Chen 1, Jun Yu 1, Ze Chen 4,5,
PMCID: PMC7088751  PMID: 32214708

Abstract

A large quantity of SARS-CoV virus was proliferated in Vero cells, inactivated with β-propiolactone, then purified by Sepharose 4FF column chromatography to prepare inactivated vaccine. The vaccine was identified by Western blot, mass spectrographic analysis, ELISA and electron microscopy. The vaccine with or without aluminum hydroxide adjuvant was inoculated into female BALB/c mice at different dosages. The result showed that the antibodies to SARS-CoV were induced in the mice. The antibody levels induced by the vaccine with aluminum hydroxide were higher than those without aluminum hydroxide.

Keywords: SARS, coronavirus, inactivated vaccine

Contributor Information

Jian Wang, Email: chenze@mail.hunnu.edu.cn.

Ze Chen, Email: chenze@mail.hunnu.edu.cn.

References

  • 1.Rota P. A., Oberste M. S., Monroe S. S., et al. Characterization of a novel coronavirus associated with severe acute respiratory syndrome. Science. 2003;300(5624):1394–1399. doi: 10.1126/science.1085952. [DOI] [PubMed] [Google Scholar]
  • 2.Ruef C. SARS — a fast moving infectious disease. Infection. 2003;31(3):135–135. doi: 10.1007/s15010-003-7303-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Dye C., Gay N. Epidemiology. Modeling the SARS epidemic. Science. 2003;300(5627):1884–1885. doi: 10.1126/science.1086925. [DOI] [PubMed] [Google Scholar]
  • 4.Enserink M. SARS in China. The big question now: will it be back? Science. 2003;301(5631):299–299. doi: 10.1126/science.301.5631.299. [DOI] [PubMed] [Google Scholar]
  • 5.Pearson H., Clarke T., Abbott A., et al. SARS: what have we learned? Nature. 2003;424(6945):121–126. doi: 10.1038/424121a. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Steinhoff M. C. Viral vaccines for the prevention of childhood pneumonia in developing nations: priorities and prospects. Rev. Infect Dis. 1991;13(6):S562–570. doi: 10.1093/clinids/13.supplement_6.s562. [DOI] [PubMed] [Google Scholar]
  • 7.Lieu T. A., Thompson K. M., Prosser L. A., et al. Emerging issues in vaccine economics: perspectives from the USA. Expert Rev. Vaccines. 2002;1(4):433–442. doi: 10.1586/14760584.1.4.433. [DOI] [PubMed] [Google Scholar]
  • 8.Rappuoli R., Miller H. I., Falkow S. Medicine. The intangible value of vaccination. Science. 2002;297(5583):937–939. doi: 10.1126/science.1075173. [DOI] [PubMed] [Google Scholar]
  • 9.Batson, A., Sustainable introduction of affordable new vaccines: the targeting strategy, Vaccine, 1998, Suppl: S93–98. [DOI] [PubMed]
  • 10.Qin E. D., Zhu Q. Y., Yu M., et al. A complete sequence and comparative analysis of a SARS-associated virus (Isolate BJ01) Chinese Science Bulletin. 2003;48(10):941–948. doi: 10.1360/03wc0186. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Chen, Z., Sahashi, Y., Matsuo, K. et al., Comparison of the ability of viral protein-expressing plasmid DNAs to protect against influenza, Vaccine, 16(16): 1544–1549. [DOI] [PubMed]
  • 12.Chen Z., Kadowaki S., Hagiwara Y., et al. Protection against influenza B virus infection by immunization with DNA vaccines. Vaccine. 2001;19(11–12):1446–1455. doi: 10.1016/S0264-410X(00)00351-0. [DOI] [PubMed] [Google Scholar]
  • 13.Budowsky E. I., Friedman E. A., Zheleznova N. V. Principles of selective inactivation of viral genome. VII. Some peculiarities in determination of viral suspension infectivity during inactivation by chemical agents. Vaccine. 1991;9(7):473–476. doi: 10.1016/0264-410X(91)90031-Z. [DOI] [PubMed] [Google Scholar]
  • 14.Budowsky E. I., Smirnov Y. A., Shenderovich S. F. Principles of selective inactivation of viral genome. VII. The influence of beta-propiolactone on immunogenic and protective activities of influenza virus. Vaccine. 1993;11(3):343–348. doi: 10.1016/0264-410X(93)90197-6. [DOI] [PubMed] [Google Scholar]
  • 15.Smith A. L., De Souza M. S., Finzi D., et al. Responses of mice to murine coronavirus immunization. Arch Virol. 1992;125(1–4):39–52. doi: 10.1007/BF01309627. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Stephan W., Dichtelmuller H., Prince A. M., et al. Inactivation of the Hutchinson strain of hepatitis non-A, non-B virus in intravenous immunoglobulin by beta-propiolactone. J. Med. Virol. 1988;26(3):227–232. doi: 10.1002/jmv.1890260302. [DOI] [PubMed] [Google Scholar]
  • 17.Gupta R. K., Relyveld E. H., Lindblad E. B., et al. Adjuvants-a balance between toxicity and adjuvanticity. Vaccine. 1993;11(3):293–300. doi: 10.1016/0264-410X(93)90190-9. [DOI] [PubMed] [Google Scholar]
  • 18.Clements C. J., Griffiths E. The global impact of vaccines containing aluminium adjuvants. Vaccine. 2002;20(3):S24–S33. doi: 10.1016/S0264-410X(02)00168-8. [DOI] [PubMed] [Google Scholar]
  • 19.Theodore C. E., Martin M. Workshop summary: Aluminum in vaccines. Vaccine. 2002;20(3):S1–S4. doi: 10.1016/s0264-410x(02)00163-9. [DOI] [PubMed] [Google Scholar]

Articles from Chinese Science Bulletin = Kexue Tongbao are provided here courtesy of Nature Publishing Group

RESOURCES