Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 2013 Aug 30;49(12):1261–1266. doi: 10.1360/03wc0550

Inhibition of BmNPV replication in Bombyx mori cell by dsRNA triggered RNA interference

Xu Ying 1, Zhu Chenggang 1, Jin Yongfeng 1,, Zhang Yaozhou 2
PMCID: PMC7088768  PMID: 32214710

Abstract

RNA interference (RNAi) causes degradation of targeted endogenous RNA in many diverse organisms. To investigate the effect of dsRNA on silkworm cells, we transfected three kinds of synthetic dsRNAs of 435 bp(Ap1), 300 bp(Ap2) and 399 bp(AH) in length against the various regions of BmNPV’s DNA polymerase gene and DNA helicase gene, which are indispensable for viral replication in silkworm cells by TransMessengerTM transfection Reagent. Results indicated that in the experiment where silkworm cells were infected with wild-strain BmNPV of the three dsRNAs, Ap2 and AH can effectively suppress the replication of virus, but Ap1 had no effect on the inhibition of viral replication. Ap2 and AH can reduce the infective titer of BmNPV with a peak change of approximately 3–4 logs on day 4 post-infection. The results of reverse transcript polymerase chain reaction (RT-PCR) and DNA dot blotting also indicated that the expression level of the two target genes and the quantity of viral DNA both distinctly decreased under the influence of Ap2 or AH. Furthermore, using fluorescence microscopy we analyzed the distribution patterns of dsRNA. Our studies revealed that a majority of dsRNA was localized in the nuclear periphery discontinuously after 24 h of transfection.

Keywords: BmNPV, RNAi, dsRNA, replication, inhibition

References

  • 1.Fire A., Xu S. Q., Montgomery M. K., et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. 1998;391:806–811. doi: 10.1038/35888. [DOI] [PubMed] [Google Scholar]
  • 2.Elbashir S. M., Harborth J., Lendecbel W., et al. Duplexes of 21-nucletide RNAs mediate RNA interference in cultured mammalian cells. Nature. 2001;411:494–498. doi: 10.1038/35078107. [DOI] [PubMed] [Google Scholar]
  • 3.Elbashir S. M., Lendecbel W., Tuschl T. RNA interference is mediated by 21-and 22-nucleotide RNA. Genes Dev. 2001;15:188–200. doi: 10.1101/gad.862301. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Lipardi C., Wei Q., Paterson B. M. RNAi as random degradative PCR siRNA primers convert mRNA into dsRNA that are degraded to generate new siRNAs. Cell. 2001;107:297–307. doi: 10.1016/S0092-8674(01)00537-2. [DOI] [PubMed] [Google Scholar]
  • 5.Nykanen A., Haley B., Zamore P. D. ATP requirements and small interfering RNA structure in the RNA interference pathway. Cell. 2001;107:309–321. doi: 10.1016/S0092-8674(01)00547-5. [DOI] [PubMed] [Google Scholar]
  • 6.Dzitoyeva S., Dimitrijevic N., Manev H. Intra obdominal injection of double-strand RNA into anesthetized adult Drosophila triggers RNA interference in the central nervous system. Mol. Psychiatry. 2001;6(6):665–670. doi: 10.1038/sj.mp.4000955. [DOI] [PubMed] [Google Scholar]
  • 7.Hutvagner G., Zamore P. D. Curr Opin RNAi:nature abhors a double-strand. Genetica & Development. 2002;12:225–232. doi: 10.1016/S0959-437X(02)00290-3. [DOI] [PubMed] [Google Scholar]
  • 8.Grishok A., Pasquinelli A. E., Conte D., et al. Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control C. elegans developmental timing. Cell. 2001;106:23–34. doi: 10.1016/S0092-8674(01)00431-7. [DOI] [PubMed] [Google Scholar]
  • 9.Lü H. S. Insect Viral Molecular Biology. Beijing: Agricultural Technology Publishing House; 1998. pp. 228–229. [Google Scholar]
  • 10.Byrom M., Pallotta V., Brown B., et al. Visualizing siRNA in mammalian cells: Fluorescence analysis of RNAi effect. Ambiom. Technotes. 2002;9(3):68–68. [Google Scholar]
  • 11.Liu Y., Alan H., Alexander R., Charles E. S. Double-strand RNA-specific adenosine deaminase: Nucleic acid binding properties. Methods. 1998;15(3):199–205. doi: 10.1006/meth.1998.0624. [DOI] [PubMed] [Google Scholar]
  • 12.Brummelkamp T. R., Bernards R., Agami R. A system for stable expression of short interfering RNAs in mammalian cells. Science. 2002;296:550–553. doi: 10.1126/science.1068999. [DOI] [PubMed] [Google Scholar]
  • 13.Means J. C., Muro I., Clem R. J. Silencing of baculovirus Op-iap3 gene by RNA interference reveals that it is required for prevention of apoptosis during Origyia pseudotsugata M nucleopolyhedrovirus infection of Ld652Y cells. J. Virol. 2003;77(8):4481–4488. doi: 10.1128/JVI.77.8.4481-4488.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Caplen N., Fleenor J., Fire A., et al. dsRNA-mediated gene silencing in culture Drosophila cells: A tissue culture model for the analysis of RNA interference. Gene. 2000;252:95–105. doi: 10.1016/S0378-1119(00)00224-9. [DOI] [PubMed] [Google Scholar]

Articles from Chinese Science Bulletin = Kexue Tongbao are provided here courtesy of Nature Publishing Group

RESOURCES