Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 2007 Jan 20;14(1):31–41. doi: 10.1007/s11373-006-9127-1

Characterization of the cleavage of signal peptide at the C-terminus of hepatitis C virus core protein by signal peptide peptidase

Hsin-Chieh Ma 1, Yi-Yung Ku 2, Yi-Ching Hsieh 2, Shih-Yen Lo 1,2,3,
PMCID: PMC7088784  PMID: 17237979

Abstract

Production of hepatitis C virus (HCV) core protein requires the cleavages of polyprotein by signal peptidase and signal peptide peptidase (SPP). Cleavage of signal peptide at the C-terminus of HCV core protein by SPP was characterized in this study. The spko mutant (mutate a.a. 189–193 from ASAYQ to PPFPF) is more efficient than the A/F mutant (mutate a.a 189 and 191 from A to F) in blocking the cleavage of signal peptide by signal peptidase. The cleavage efficiency of SPP is inversely proportional to the length of C-terminal extension of the signal peptide: the longer the extension, the less efficiency the cleavage is. Thus, reducing the length of C-terminal extension of signal peptide by signal peptidase cleavage could facilitate further cleavage by SPP. The recombinant core protein fused with signal peptide from the C-terminus of p7 protein, but not those from the C-termini of E1 and E2, could be cleaved by SPP. Therefore, the sequence of the signal peptide is important but not the sole determinant for its cleavage by SPP. Replacement of the HCV core protein E.R.-associated domain (a.a. 120–150) with the E.R.-associated domain (a.a.1–50) of SARS-CoV membrane protein results in the failure of cleavage of this recombinant protein by SPP, though this protein still is E.R.-associated. This result suggests that not only E.R.-association but also specific protein sequence is important for the HCV core protein signal peptide cleavage by SPP. Thus, our results suggest that both sequences of the signal peptide and the E.R.-associated domain are important for the signal peptide cleavage of HCV core protein by SPP.

Electronic Supplementary MaterialThe online version of this article (doi: 10.1007/s11373-006-9127-1) contains supplementary material, which is available to authorized users.

Keywords: core protein, hepatitis C virus, signal peptidase, signal peptide, signal peptide peptidase

Electronic supplementary material

Below is the link to the electronic supplementary material.

71 kb (70.2KB, pdf)
22 kb (21.5KB, doc)

Acknowledgements

We thank Dr. Charles M. Rice for providing p90/HCVFL-long pU plasmid, Dr. Huichun Li for critical review of this manuscript. This work has been supported by grants from National Science Council of Taiwan (NSC 93-2314-B-320-003 and NSC 953112B320001) to Dr. Shih-Yen Lo.

References

  • 1.Penin F., Dubuisson J., Rey F.A., Moradpour D., Pawlotsky J.M. Structural biology of hepatitis C virus. Hepatology. 2004;39:5–19. doi: 10.1002/hep.20032. [DOI] [PubMed] [Google Scholar]
  • 2.Rosenberg S. Recent advances in the molecular biology of hepatitis C virus. J Mol Biol. 2001;313:451–64. doi: 10.1006/jmbi.2001.5055. [DOI] [PubMed] [Google Scholar]
  • 3.Carrere-Kremer S., Montpellier-Pala C., Cocquerel L., Wychowski C., Penin F., Dubuisson J. Subcellular localization and topology of the p7 polypeptide of hepatitis C virus. J Virol. 2002;76:3720–30. doi: 10.1128/JVI.76.8.3720-3730.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Xu Z., Choi J., Yen T.S., Lu W., Strohecker A., Govindarajan S., Chien D., Selby M.J., Ou J. Synthesis of a novel hepatitis C virus protein by ribosomal frameshift. Embo J. 2001;20:3840–8. doi: 10.1093/emboj/20.14.3840. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Ray R.B., Lagging L.M., Meyer K., Steele R., Ray R. Transcriptional regulation of cellular and viral promoters by the hepatitis C virus core protein. Virus Res. 1995;37:209–20. doi: 10.1016/0168-1702(95)00034-N. [DOI] [PubMed] [Google Scholar]
  • 6.Chen C.M., You L.R., Hwang L.H., Lee Y.H. Direct interaction of hepatitis C virus core protein with the cellular lymphotoxin-beta receptor modulates the signal pathway of the lymphotoxin-beta receptor. J Virol. 1997;71:9417–26. doi: 10.1128/jvi.71.12.9417-9426.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Heim M.H., Moradpour D., Blum H.E. Expression of hepatitis C virus proteins inhibits signal transduction through the Jak-STAT pathway. J Virol. 1999;73:8469–75. doi: 10.1128/jvi.73.10.8469-8475.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Lu W., Lo S.Y., Chen M., Wu K., Fung Y.K., Ou J.H. Activation of p53 tumor suppressor by hepatitis C virus core protein. Virology. 1999;264:134–41. doi: 10.1006/viro.1999.9979. [DOI] [PubMed] [Google Scholar]
  • 9.Honda M., Kaneko S., Shimazaki T., Matsushita E., Kobayashi K., Ping L.H., Zhang H.C., Lemon S.M. Hepatitis C virus core protein induces apoptosis and impairs cell-cycle regulation in stably transformed Chinese hamster ovary cells. Hepatology. 2000;31:1351–9. doi: 10.1053/jhep.2000.7985. [DOI] [PubMed] [Google Scholar]
  • 10.Ray R.B., Meyer K., Steele R., Shrivastava A., Aggarwal B.B., Ray R. Inhibition of tumor necrosis factor (TNF-alpha)-mediated apoptosis by hepatitis C virus core protein. J Biol Chem. 1998;273:2256–9. doi: 10.1074/jbc.273.4.2256. [DOI] [PubMed] [Google Scholar]
  • 11.Ruggieri A., Harada T., Matsuura Y., Miyamura T. Sensitization to Fas-mediated apoptosis by hepatitis C virus core protein. Virology. 1997;229:68–76. doi: 10.1006/viro.1996.8420. [DOI] [PubMed] [Google Scholar]
  • 12.Moriya K., Yotsuyanagi H., Shintani Y., Fujie H., Ishibashi K., Matsuura Y., Miyamura T., Koike K. Hepatitis C virus core protein induces hepatic steatosis in transgenic mice. J Gen Virol. 1997;78((Pt 7):1527–31. doi: 10.1099/0022-1317-78-7-1527. [DOI] [PubMed] [Google Scholar]
  • 13.Moriya K., Fujie H., Shintani Y., Yotsuyanagi H., Tsutsumi T., Ishibashi K., Matsuura Y., Kimura S., Miyamura T., Koike K. The core protein of hepatitis C virus induces hepatocellular carcinoma in transgenic mice. Nat Med. 1998;4:1065–7. doi: 10.1038/2053. [DOI] [PubMed] [Google Scholar]
  • 14.Hussy P., Langen H., Mous J., Jacobsen H. Hepatitis C virus core protein:carboxy-terminal boundaries of two processed species suggest cleavage by a signal peptide peptidase. Virology. 1996;224:93–104. doi: 10.1006/viro.1996.0510. [DOI] [PubMed] [Google Scholar]
  • 15.McLauchlan J., Lemberg M.K., Hope G., Martoglio B. Intramembrane proteolysis promotes trafficking of hepatitis C virus core protein to lipid droplets. Embo J. 2002;21:3980–8. doi: 10.1093/emboj/cdf414. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Majeau N., Gagne V., Bolduc M., Leclerc D. Signal peptide peptidase promotes the formation of hepatitis C virus non-enveloped particles and is captured on the viral membrane during assembly. J Gen Virol. 2005;86:3055–64. doi: 10.1099/vir.0.81174-0. [DOI] [PubMed] [Google Scholar]
  • 17.Ait-Goughoulte M., Hourioux C., Patient R., Trassard S., Brand D., Roingeard P. Core protein cleavage by signal peptide peptidase is required for hepatitis C virus-like particle assembly. J Gen Virol. 2006;87:855–60. doi: 10.1099/vir.0.81664-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Weihofen A., Binns K., Lemberg M.K., Ashman K., Martoglio B. Identification of signal peptide peptidase, a presenilin-type aspartic protease. Science. 2002;296:2215–8. doi: 10.1126/science.1070925. [DOI] [PubMed] [Google Scholar]
  • 19.Lemberg M.K., Martoglio B. On the mechanism of SPP-catalysed intramembrane proteolysis; conformational control of peptide bond hydrolysis in the plane of the membrane. FEBS Lett. 2004;564:213–8. doi: 10.1016/S0014-5793(04)00192-9. [DOI] [PubMed] [Google Scholar]
  • 20.Lemberg M.K., Martoglio B. Requirements for signal peptide peptidase-catalyzed intramembrane proteolysis. Mol Cell. 2002;10:735–44. doi: 10.1016/S1097-2765(02)00655-X. [DOI] [PubMed] [Google Scholar]
  • 21.Okamoto K., Moriishi K., Miyamura T., Matsuura Y. Intramembrane proteolysis and endoplasmic reticulum retention of hepatitis C virus core protein. J Virol. 2004;78:6370–80. doi: 10.1128/JVI.78.12.6370-6380.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Kolykhalov A.A., Agapov E.V., Blight K.J., Mihalik K., Feinstone S.M., Rice C.M. Transmission of hepatitis C by intrahepatic inoculation with transcribed RNA. Science. 1997;277:570–4. doi: 10.1126/science.277.5325.570. [DOI] [PubMed] [Google Scholar]
  • 23.Ma H.C., Lee Y.N., Yang H.H., Chen L.K., Lo S.Y. (2005) Expression and antibody response of SARS-CoV M protein
  • 24.Fuerst T.R., Niles E.G., Studier F.W., Moss B. Eukaryotic transient-expression system based on recombinant vaccinia virus that synthesizes bacteriophage T7 RNA polymerase. Proc Natl Acad Sci U S A. 1986;83:8122–6. doi: 10.1073/pnas.83.21.8122. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Weihofen A., Lemberg M.K., Ploegh H.L., Bogyo M., Martoglio B. Release of signal peptide fragments into the cytosol requires cleavage in the transmembrane region by a protease activity that is specifically blocked by a novel cysteine protease inhibitor. J Biol Chem. 2000;275:30951–6. doi: 10.1074/jbc.M005980200. [DOI] [PubMed] [Google Scholar]
  • 26.Sambrok J., Fritsch E.F., Maniatis T. Molecular cloning: a laboratory manual. 2. Cold Spring Harbor, N.Y.: Cold Spring Harbor Laboratory; 1994. [Google Scholar]
  • 27.Ma H.C., Ke C.H., Hsieh T.Y., Lo S.Y. The first hydrophobic domain of the hepatitis C virus E1 protein is important for interaction with the capsid protein. J Gen Virol. 2002;83:3085–92. doi: 10.1099/0022-1317-83-12-3085. [DOI] [PubMed] [Google Scholar]
  • 28.Chang S.C., Yen J.H., Kang H.Y., Jang M.H., Chang M.F. Nuclear localization signals in the core protein of hepatitis C virus. Biochem Biophys Res Commun. 1994;205:1284–90. doi: 10.1006/bbrc.1994.2804. [DOI] [PubMed] [Google Scholar]
  • 29.von Heijne G. Patterns of amino acids near signal-sequence cleavage sites. Eur J Biochem. 1983;133:17–21. doi: 10.1111/j.1432-1033.1983.tb07424.x. [DOI] [PubMed] [Google Scholar]
  • 30.Hope R.G., McElwee M.J., McLauchlan J. Efficient cleavage by signal peptide peptidase requires residues within the signal peptide between the core and E1 proteins of hepatitis C virus strain J1. J Gen Virol. 2006;87:623–7. doi: 10.1099/vir.0.81371-0. [DOI] [PubMed] [Google Scholar]
  • 31.Braud V., Jones E.Y., McMichael A. The human major histocompatibility complex class Ib molecule HLA-E binds signal sequence-derived peptides with primary anchor residues at positions 2 and 9. Eur J Immunol. 1997;27:1164–9. doi: 10.1002/eji.1830270517. [DOI] [PubMed] [Google Scholar]
  • 32.Borrego F., Ulbrecht M., Weiss E.H., Coligan J.E., Brooks A.G. Recognition of human histocompatibility leukocyte antigen (HLA)-E complexed with HLA class I signal sequence-derived peptides by CD94/NKG2 confers protection from natural killer cell-mediated lysis. J Exp Med. 1998;187:813–8. doi: 10.1084/jem.187.5.813. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33.Braud V.M., Allan D.S., O’Callaghan C.A., Soderstrom K., D’Andrea A., Ogg G.S., Lazetic S., Young N.T., Bell J.I., Phillips J.H., Lanier L.L., McMichael A.J. HLA-E binds to natural killer cell receptors CD94/NKG2A, B and C. Nature. 1998;391:795–9. doi: 10.1038/35869. [DOI] [PubMed] [Google Scholar]
  • 34.Martoglio B., Graf R., Dobberstein B. Signal peptide fragments of preprolactin and HIV-1 p-gp160 interact with calmodulin. Embo J. 1997;16:6636–45. doi: 10.1093/emboj/16.22.6636. [DOI] [PMC free article] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

71 kb (70.2KB, pdf)
22 kb (21.5KB, doc)

Articles from Journal of Biomedical Science are provided here courtesy of Nature Publishing Group

RESOURCES