Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 2007 Aug 16;70(2):382–397. doi: 10.1007/s11538-007-9257-2

A Delay Differential Model for Pandemic Influenza with Antiviral Treatment

Murray E Alexander 1,3, Seyed M Moghadas 1,2,, Gergely Röst 4,5, Jianhong Wu 5
PMCID: PMC7088798  PMID: 17701376

Abstract

The use of antiviral drugs has been recognized as the primary public health strategy for mitigating the severity of a new influenza pandemic strain. However, the success of this strategy requires the prompt onset of therapy within 48 hours of the appearance of clinical symptoms. This requirement may be captured by a compartmental model that monitors the density of infected individuals in terms of the time elapsed since the onset of symptoms. We show that such a model can be expressed by a system of delay differential equations with both discrete and distributed delays. The model is analyzed to derive the criterion for disease control based on two critical factors: (i) the profile of treatment rate; and (ii) the level of treatment as a function of time lag in commencing therapy. Numerical results are also obtained to illustrate the feasible region of disease control. Our findings show that due to uncertainty in the attack rate of a pandemic strain, initiating therapy immediately upon diagnosis can significantly increase the likelihood of disease control and substantially reduce the required community-level of treatment. This suggests that reliable diagnostic methods for influenza cases should be rapidly implemented within an antiviral treatment strategy.

Keywords: Influenza pandemic, Antiviral treatment, Delay equations, Epidemic model

References

  1. Arino J., Brauer F., van den Driessche P., Watmough J., Wu J. Simple models for containment of a pandemic. J. Roy. Soc. Interface. 2006;3:453–457. doi: 10.1098/rsif.2006.0112. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Baccam P., Beauchemin C., Macken C.A., Hayden F.G., Perelson A.S. Kinetics of influenza A virus infection in humans. J. Virol. 2006;80:7590–7599. doi: 10.1128/JVI.01623-05. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cox N.J., Tamblyn S.E., Tam T. Influenza pandemic planning. Vaccine. 2003;21:1801–1803. doi: 10.1016/S0264-410X(03)00076-8. [DOI] [PubMed] [Google Scholar]
  4. Diekmann O., Heesterbeek J.A.P. Mathematical Epidemiology of Infectious Diseases. Chichester: Wiley; 2000. [Google Scholar]
  5. Ferguson N.M., Mallett S., Jackson H., Roberts N., Ward P. A population-dynamic model for evaluating the potential spread of drug-resistant influenza virus infections during community-based use of antivirals. J. Antimicrob. Chemother. 2003;51:977–990. doi: 10.1093/jac/dkg136. [DOI] [PubMed] [Google Scholar]
  6. Ferguson N.M., Cummings D.A.T., Cauchemez S., Fraser C., Riley S., Meeyai A., Iamsirithaworn S., Burke D.S. Strategies for containing an emerging influenza pandemic in Southeast Asia. Nature. 2005;437:209–214. doi: 10.1038/nature04017. [DOI] [PubMed] [Google Scholar]
  7. Ferguson N.M., Cummings D.A.T., Fraser C., Cajka J.C., Cooley P.C., Burke D.S. Strategies for mitigating an influenza pandemic. Nature. 2006;442:448–452. doi: 10.1038/nature04795. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gani R., Hughes H., Fleming D., Griffin T., Medlock J., Leach S. Potential impact of antiviral drug use during influenza pandemic. Emerg. Infect. Dis. 2005;9:1355–1362. doi: 10.3201/eid1109.041344. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Germann T.C., Kadau K., Longini I.M., Jr., Macken C.A. Mitigation strategies for pandemic influenza in the United States. Proc. Natl. Acad. Sci. USA. 2006;103:5935–5940. doi: 10.1073/pnas.0601266103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gumel A.B., Ruan S., Day T., Watmough J., Brauer F., van den Driessche P., Gabrielson D., Bowman C., Alexander M.E., Ardal S., Wu J., Sahai B.M. Modeling strategies for controlling SARS outbreaks. Proc. Roy. Soc. B. 2004;271:2223–2232. doi: 10.1098/rspb.2004.2800. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Jefferson T., Demicheli V., Rivetti D., Jones M., Di Pietrantonj C., Rivetti A. Antivirals for influenza in healthy adults: systematic review. Lancet. 2006;367:303–313. doi: 10.1016/S0140-6736(06)67970-1. [DOI] [PubMed] [Google Scholar]
  12. Linde A. The importance of specific virus diagnosis and monitoring for antiviral treatment. Antiviral Res. 2001;51:81–94. doi: 10.1016/S0166-3542(01)00129-2. [DOI] [PubMed] [Google Scholar]
  13. Longini I.M., Jr., Halloran M.E., Nizam A., Yang Y. Containing pandemic influenza with antiviral agents. Am. J. Epidemiol. 2004;159:623–633. doi: 10.1093/aje/kwh092. [DOI] [PubMed] [Google Scholar]
  14. Longini I.M., Jr., Nizam A., Xu S., Ungchusak K., Hanshaoworakul W., Cummings D.A.T., Halloran M.E. Containing pandemic influenza at the source. Science. 2005;309:1083–1087. doi: 10.1126/science.1115717. [DOI] [PubMed] [Google Scholar]
  15. Metz J.A.J., Diekmann O. The Dynamics of Physiologically Structured populations. Berlin: Springer; 1986. [Google Scholar]
  16. Smith H.L. Monotone Dynamical Systems, an Introduction to the Theory of Competitive and Cooperative Systems. Providence: American Mathematical Society; 1995. [Google Scholar]
  17. Stilianakis N.I., Perelson A.S., Hayden F.G. Emergence of drug resistance during an influenza epidemic: insights from a mathematical model. J. Infect. Dis. 1998;177:863–873. doi: 10.1086/515246. [DOI] [PubMed] [Google Scholar]
  18. Taubenberger J.K., Morens D.M. 1918 influenza: the mother of all pandemics. Emerg. Infect. Dis. 2006;12:15–22. doi: 10.3201/eid1201.050979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Webb G.F. Theory of Nonlinear Age-Dependent Population Dynamics. New York: Dekker; 1985. [Google Scholar]
  20. World Health Organization Writing Group Nonpharmaceutical interventions for pandemic influenza. International measures. Emerg. Infect. Dis. 2006;12:81–87. doi: 10.3201/eid1201.051370. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Bulletin of Mathematical Biology are provided here courtesy of Nature Publishing Group

RESOURCES