Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 2019 Jul 17;63(8):1240–1250. doi: 10.1007/s11427-019-9576-2

Next-generation sequencing and single-cell RT-PCR reveal a distinct variable gene usage of porcine antibody repertoire following PEDV vaccination

Ren Li 1, Fang Fu 1, Li Feng 1,, PingHuang Liu 1,
PMCID: PMC7088813  PMID: 31321668

Abstract

Porcine epidemic diarrhea virus (PEDV) is the most common diarrhea-causing pathogen in newborn piglets. The clarifications of the overall antibody repertoire and antigen-specific antibody repertoire are essential to provide important insights into the B-cell response and reshape new vaccines. Here, we applied next-generation sequencing (NGS) technology to investigate immunoglobulin (Ig) variable (V) gene segment usage of swine B-cells from peripheral blood lymphocytes (PBL) and mesenteric lymph node (MLN) cells following PEDV vaccination. We identified the transcripts of all functional Ig V-genes in antibody repertoire. IgHV1S2, IgKV1-11, and IgLV3-4 were the most prevalent gene segments for heavy, kappa, and lambda chains, respectively, in PBL and MLN. Unlike previous studies, IgKV1, instead of IgKV2, and IgLV3, instead of IgLV8, were the prevalent Ig V-gene families for kappa and lambda light chains, respectively. We further examined the antibody repertoire of PEDV spike-specific B cells by single-cell RT-PCR. In contrast to the overall antibody repertoire, Ig V-gene segments of PEDV spike-specific B cells preferentially adopted IgHV1-4 and IgHV1-14 for heavy chain, IgKV1-11 for kappa chain, and IgLV3-3 for lambda chain. These results represent a comprehensive analysis to characterize the Ig V-gene segment usage in the overall and PEDV spike-specific antibody repertoire in PBL and MLN.

Keywords: porcine epidemic diarrhea virus (PEDV), next-generation sequencing (NGS), single-cell RT-PCR, antibody repertoire

Acknowledgements

This work was supported by the National Natural Science Foundation of China (31772718) and the Open Research Fund of State Key Laboratory of Veterinary Biotechnology (SKLVBF2018XX). We thank Dr. Caixia Gao (Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, China) for assistance and advice in swine leukocyte antigens (SLA) types identification.

Footnotes

Compliance and ethics

The author(s) declare that they have no conflict of interest.

Contributor Information

Li Feng, Email: fengli@caas.cn.

PingHuang Liu, Email: liupinghuang@caas.cn.

References

  1. Brochet X, Lefranc MP, Giudicelli V. IMGT/V-QUEST: The highly customized and integrated system for IG and TR standardized V-J and V-D-J sequence analysis. Nucleic Acids Res. 2008;36:W503–W508. doi: 10.1093/nar/gkn316. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Butler JE, Wertz N, Sun J, Wang H, Chardon P, Piumi F, Wells K. Antibody repertoire development in fetal and neonatal pigs. VII. Characterization of the preimmune kappa light chain repertoire. J Immunol. 2004;173:6794–6805. doi: 10.4049/jimmunol.173.11.6794. [DOI] [PubMed] [Google Scholar]
  3. Butler JE, Wertz N, Sun XZ. Antibody repertoire development in fetal and neonatal piglets. XIV. Highly restricted IGKV gene usage parallels the pattern seen with IGLV and IGHV. Mol Immunol. 2013;55:329–336. doi: 10.1016/j.molimm.2013.03.011. [DOI] [PubMed] [Google Scholar]
  4. Carlson CS, Emerson RO, Sherwood AM, Desmarais C, Chung M W, Parsons JM, Steen MS, LaMadrid-Herrmannsfeldt MA, Williamson DW, Livingston RJ, et al. Using synthetic templates to design an unbiased multiplex PCR assay. Nat Commun. 2013;4:2680. doi: 10.1038/ncomms3680. [DOI] [PubMed] [Google Scholar]
  5. Eguchi-Ogawa T, Wertz N, Sun XZ, Piumi F, Uenishi H, Wells K, Chardon P, Tobin GJ, Butler JE. Antibody repertoire development in fetal and neonatal piglets. XI. The relationship of variable heavy chain gene usage and the genomic organization of the variable heavy chain locus. J Immunol. 2010;184:3734–3742. doi: 10.4049/jimmunol.0903616. [DOI] [PubMed] [Google Scholar]
  6. Fu F, Li L, Shan L, Yang B, Shi H, Zhang J, Wang H, Feng L, Liu P. A spike-specific whole-porcine antibody isolated from a porcine B cell that neutralizes both genogroup 1 and 2 PEDV strains. Vet Microbiol. 2017;205:99–105. doi: 10.1016/j.vetmic.2017.05.013. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. He L, Sok D, Azadnia P, Hsueh J, Landais E, Simek M, Koff WC, Poignard P, Burton DR, Zhu J. Toward a more accurate view of human B-cell repertoire by next-generation sequencing, unbiased repertoire capture and single-molecule barcoding. Sci Rep. 2014;4:6778. doi: 10.1038/srep06778. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Huang YW, Dickerman AW, Piñeyro P, Li L, Fang L, Kiehne R, Opriessnig T, Meng XJ, Griffin DE. Origin, evolution, and genotyping of emergent porcine epidemic diarrhea virus strains in the United States. mBio. 2013;4:e00737. doi: 10.1128/mBio.00737-13. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Jung K, Annamalai T, Lu Z, Saif LJ. Comparative pathogenesis of US porcine epidemic diarrhea virus (PEDV) strain PC21A in conventional 9-day-old nursing piglets vs. 26-day-old weaned pigs. Vet Microbiol. 2015;178:31–40. doi: 10.1016/j.vetmic.2015.04.022. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Langel SN, Paim FC, Lager KM, Vlasova AN, Saif LJ. Lactogenic immunity and vaccines for porcine epidemic diarrhea virus (PEDV): Historical and current concepts. Virus Res. 2016;226:93–107. doi: 10.1016/j.virusres.2016.05.016. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Liu C, Tang J, Ma Y, Liang X, Yang Y, Peng G, Qi Q, Jiang S, Li J, Du L, et al. Receptor usage and cell entry of porcine epidemic diarrhea coronavirus. J Virol. 2015;89:6121–6125. doi: 10.1128/JVI.00430-15. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Park JE, Cruz DJM, Shin HJ. Receptor-bound porcine epidemic diarrhea virus spike protein cleaved by trypsin induces membrane fusion. Arch Virol. 2011;156:1749–1756. doi: 10.1007/s00705-011-1044-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Pensaert MB, de Bouck P. A new coronavirus-like particle associated with diarrhea in swine. Archiv Virol. 1978;58:243–247. doi: 10.1007/BF01317606. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Sattentau QJ. Immunogen design to focus the B-cell repertoire. Curr Opin HIV AIDS. 2014;9:217–223. doi: 10.1097/COH.0000000000000054. [DOI] [PubMed] [Google Scholar]
  15. Schwartz JC, Lefranc MP, Murtaugh MP. Evolution of the porcine (Sus scrofa domestica) immunoglobulin kappa locus through germline gene conversion. Immunogenetics. 2012;64:303–311. doi: 10.1007/s00251-011-0589-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Schwartz JC, Lefranc MP, Murtaugh MP. Organization, complexity and allelic diversity of the porcine (Sus scrofa domestica) immunoglobulin lambda locus. Immunogenetics. 2012;64:399–407. doi: 10.1007/s00251-011-0594-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Sun J, Butler JE. Molecular characterization of VDJ transcripts from a newborn piglet. Immunology. 1996;88:331–339. doi: 10.1046/j.1365-2567.1996.d01-676.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Sun J, Hayward C, Shinde R, Christenson R, Ford SP, Butler JE. Antibody repertoire development in fetal and neonatal piglets. I. Four VH genes account for 80 percent of VH usage during 84 days of fetal life. J Immunol. 1998;161:5070–5078. [PubMed] [Google Scholar]
  19. Sun X, Wertz N, Lager K, Sinkora M, Stepanova K, Tobin G, Butler JE. Antibody repertoire development in fetal and neonatal piglets. XXII. λ rearrangement precedes κ rearrangement during B-cell lymphogenesis in swine. Immunology. 2012;137:149–159. doi: 10.1111/j.1365-2567.2012.03615.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Sundling C, Zhang Z, Phad GE, Sheng Z, Wang Y, Mascola JR, Li Y, Wyatt RT, Shapiro L, Karlsson Hedestam GB. Single-cell and deep sequencing of IgG-switched macaque B cells reveal a diverse Ig repertoire following immunization. J Immunol. 2014;192:3637–3644. doi: 10.4049/jimmunol.1303334. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Wang D, Fang L, Xiao S. Porcine epidemic diarrhea in China. Virus Res. 2016;226:7–13. doi: 10.1016/j.virusres.2016.05.026. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Wang X, Chen J, Shi D, Shi H, Zhang X, Yuan J, Jiang S, Feng L. Immunogenicity and antigenic relationships among spike proteins of porcine epidemic diarrhea virus subtypes G1 and G2. Arch Virol. 2016;161:537–547. doi: 10.1007/s00705-015-2694-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Wertz N, Vazquez J, Wells K, Sun J, Butler JE. Antibody repertoire development in fetal and neonatal piglets. XII. Three IGLV genes comprise 70% of the pre-immune repertoire and there is little junctional diversity. Mol Immunol. 2013;55:319–328. doi: 10.1016/j.molimm.2013.03.012. [DOI] [PubMed] [Google Scholar]
  24. Wu YC, Kipling D, Dunn-Walters D. Assessment of B cell repertoire in humans. Methods Mol Biol. 2015;1343:199–218. doi: 10.1007/978-1-4939-2963-4_16. [DOI] [PubMed] [Google Scholar]
  25. Yuan L, Ward LA, Rosen BI, To TL, Saif LJ. Systematic and intestinal antibody-secreting cell responses and correlates of protective immunity to human rotavirus in a gnotobiotic pig model of disease. J Virol. 1996;70:3075–3083. doi: 10.1128/JVI.70.5.3075-3083.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Zou X, Tang G, Zhao X, Huang Y, Chen T, Lei M, Chen W, Yang L, Zhu W, Zhuang L, et al. Simultaneous virus identification and characterization of severe unexplained pneumonia cases using a metagenomics sequencing technique. Sci China Life Sci. 2017;60:279–286. doi: 10.1007/s11427-016-0244-8. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Science China. Life Sciences are provided here courtesy of Nature Publishing Group

RESOURCES