Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 2004;21(9):1519–1530. doi: 10.1023/B:PHAM.0000041443.17935.33

Novel Approaches to Vaccine Delivery

Derek T O'Hagan 1, Rino Rappuoli 2
PMCID: PMC7088827  PMID: 15497674

Abstract

Although the currently available vaccines represent an outstanding success story in modern medicine and have had a dramatic effect on morbidity and mortality worldwide, it is clear that improvements are required in the current vaccine delivery technologies. Improvements are required to enable the successful development of vaccines against infectious diseases that have so far proven difficult to control with conventional approaches. Improvements may include the addition of novel injectable adjuvants or the use of novel routes of delivery, including mucosal immunization. Mucosal delivery may be required to provide protection against pathogens that infect at mucosal sites, including sexually transmitted diseases. Alternatively, novel approaches to delivery, including mucosal administration, may be used to improve compliance for existing vaccines. Of particular interest for safer mass immunization campaigns are needle-free delivery devices, which would avoid problems due to needle re-use in many parts of the world and would avoid needle-stick injuries.

Keywords: adjuvants, emulsions, mucosal delivery, microparticles, needle-free immunization, vaccine delivery

REFERENCES

  • 1.Jodar L., Duclos P., Milstien J. B., Griffiths E., Aguado M. T., Clements C. J. Ensuring vaccine safety in immunization programmes–rspective. Vaccine. 2001;19:1594–1605. doi: 10.1016/s0264-410x(00)00358-3. [DOI] [PubMed] [Google Scholar]
  • 2.Valiante N. M., O'Hagan D., Ulmer J. Innate Immunity and biodefence vaccines. Cell. Microbiol. 2003;5:755–760. doi: 10.1046/j.1462-5822.2003.00318.x. [DOI] [PubMed] [Google Scholar]
  • 3.Polo J. M., Dubensky T. W. Virus-based vectors for human vaccine applications. Drug Discov. Today. 2002;7:719–727. doi: 10.1016/s1359-6446(02)02324-3. [DOI] [PubMed] [Google Scholar]
  • 4.Ramon G. Procedures pour accroitre la production des antitoxines. Annales de l'Institut Pasteur. 1926;40:1–10. [Google Scholar]
  • 5.Medzhitov R., Janeway C. A., Jr. An ancient system of host defense. Curr. Opin. Immunol. 1998;10:12–15. doi: 10.1016/s0952-7915(98)80024-1. [DOI] [PubMed] [Google Scholar]
  • 6.Bendelac A., Medzhitov R. Adjuvants of immunity: harnessing innate immunity to promote adaptive immunity. J. Exp. Med. 2002;195:F19–F23. doi: 10.1084/jem.20020073. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Medzhitov R. Toll-like receptors and innate immunity. Nat. Rev. Immunol. 2001;1:135–145. doi: 10.1038/35100529. [DOI] [PubMed] [Google Scholar]
  • 8.O'Hagan D. T., Valiante N. M. Recent advances in the discovery and delivery of vaccines and adjuvants. Nat. Rev. Drug Discov. 2003;2:727–735. doi: 10.1038/nrd1176. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Vogel F. R., Powell M. F. A compendium of vaccine adjuvants and excipients. In: Powelland M. F., Newman M. J., editors. Vaccine Design: The Subunit and Adjuvant Approach. New York: Plenum Press; 1995. pp. 141–228. [Google Scholar]
  • 10.Zinkernagel R. M., Ehl S., Aichele P., Oehen S., Kundig T., Hengartner H. Antigen localisation regulates immune responses in a dose-and time-dependent fashion: a geographical view of immune reactivity. Immunol. Rev. 1997;156:199–209. doi: 10.1111/j.1600-065x.1997.tb00969.x. [DOI] [PubMed] [Google Scholar]
  • 11.Edelman R. Adjuvants for the future. In: Levine M. M., Woodrow G. C., Kaper J. B., Cobon G. S., editors. New Generation Vaccines. New York: Marcel Dekker, Inc.; 1997. pp. 173–192. [Google Scholar]
  • 12.Kenney R. T., Edelman R. Survey of human-use adjuvants. Expert Review Vaccines. 2003;2:167–188. doi: 10.1586/14760584.2.2.167. [DOI] [PubMed] [Google Scholar]
  • 13.G. Ott. The Adjuvant MF59: A ten year perspective. In D. O'Hagan (ed), Vaccine Adjuvants; Preparation methods and research protocols (D. O'Hagan, ed), Humana Press, 2001, pp. 211-228.
  • 14.Dupuis M., Denis-Mize K., LaBarbara A., Peters W., Charo I. F., McDonald D. M., Ott G. Immunization with the adjuvant MF59 induces macrophage trafficking and apoptosis. Eur. J. Immunol. 2001;31:2910–2918. doi: 10.1002/1521-4141(2001010)31:10<2910::aid-immu2910>3.0.co;2-3. [DOI] [PubMed] [Google Scholar]
  • 15.Podda A., Del Giudice G. MF59-adjuvanted vaccines: increased immunogenicity with an optimal safety profile. Expert Rev Vaccines. 2003;2:197–203. doi: 10.1586/14760584.2.2.197. [DOI] [PubMed] [Google Scholar]
  • 16.Ellouz F., Adam A., Ciorbaru R., Lederer E. Minimal structural requirements for adjuvant activity of bacterial peptidoglycan derivatives. Biochem. Biophys. Res. Commun. 1974;59:1317–1325. doi: 10.1016/0006-291x(74)90458-6. [DOI] [PubMed] [Google Scholar]
  • 17.Vidal V. F., Casteran N., Riendeau C. J., Kornfeld H., Darcissac E. C., Capron A., Bahr G. M. Macrophage stimulation with Murabutide, an HIV-suppressive muramyl peptide derivative, selectively activates extracellular signal-regulated kinases 1 and 2, C/EBPbeta and STAT1: role of CD14 and Toll-like receptors 2 and 4. Eur. J. Immunol. 2001;31:1962–1971. doi: 10.1002/1521-4141(200107)31:7<1962::aid-immu1962>3.0.co;2-v. [DOI] [PubMed] [Google Scholar]
  • 18.Wintsch J., Chaignat C. L., Braun D. G., Jeannet M., Stalder H., Abrignani S., Montagna D., Clavijo F., Moret P., Dayer J. M., et al. Safety and immunogenicity of a genetically engineered human immunodeficiency virus vaccine. J. Infect. Dis. 1991;163:219–225. doi: 10.1093/infdis/163.2.219. [DOI] [PubMed] [Google Scholar]
  • 19.Keitel W., Couch R., Bond N., Adair S., Van Nest G., Dekker C. Pilot evaluation of influenza virus vaccine (IVV) combined with adjuvant. Vaccine. 1993;11:909–913. doi: 10.1016/0264-410x(93)90376-9. [DOI] [PubMed] [Google Scholar]
  • 20.Keefer M. C., Graham B. S., McElrath M. J., Matthews T. J., Stablein D. M., Corey L., Wright P. F., Lawrence D., Fast P. E., Weinhold K., Hsieh R. H., Chernoff D., Dekker C., Dolin R. Safety and immunogenicity of Env 2-3, a human immunodeficiency virus type 1 candidate vaccine, in combination with a novel adjuvant, MTP-PE/MF59. AIDS Res. Hum. Retroviruses. 1996;12:683–693. doi: 10.1089/aid.1996.12.683. [DOI] [PubMed] [Google Scholar]
  • 21.Kahn J. O., Sinangil F., Baenziger J., Murcar N., Wynne D., Coleman R. L., Steimer K. S., Dekker C. L., Chernoff D. Clinical and immunologic responses to human immunodeficiency virus (HIV) type 1SF2 gp120 subunit vaccine combined with MF59 adjuvant with or without muramyl tripeptide dipalmitoyl phosphatidylethanolamine in non-HIV-infected human volunteers. J. Infect. Dis. 1994;170:1288–1291. doi: 10.1093/infdis/170.5.1288. [DOI] [PubMed] [Google Scholar]
  • 22.Banzhoff A., Nacci P., Podda A. A new MF59-adjuvanted influenza vaccine enhances the immune response in the elderly with chronic diseases: results from an immunogenicity meta-analysis. Gerontology. 2003;49:177–184. doi: 10.1159/000069172. [DOI] [PubMed] [Google Scholar]
  • 23.Nicholson K. G., Colegate A. E., Podda A., Stephenson I., Wood J., Ypma E., Zambon M. C. Safety and antigenicity of non-adjuvanted and MF59-adjuvanted influenza A/Duck/ Singapore/97 (H5N3) vaccine: a randomised trial of two potential vaccines against H5N1 influenza. Lancet. 2001;357:1937–1943. doi: 10.1016/S0140-6736(00)05066-2. [DOI] [PubMed] [Google Scholar]
  • 24.Cunningham C. K., Wara D. W., Kang M., Fenton T., Hawkins E., McNamara J., Mofenson L., Duliege A. M., Francis D., McFarland E. J., Borkowsky W. Safety of 2 recombinant human immunodeficiency virus type 1 (hiv-1) envelope vaccines in neonates born to hiv-1-infected women. Clin. Infect. Dis. 2001;32:801–807. doi: 10.1086/319215. [DOI] [PubMed] [Google Scholar]
  • 25.Mitchell D. K., Holmes S. J., Burke R. L., Duliege A. M., Adler S. P. Immunogenicity of a recombinant human cytomegalovirus gB vaccine in seronegative toddlers. Pediatr. Infect. Dis. J. 2002;21:133–138. doi: 10.1097/00006454-200202000-00009. [DOI] [PubMed] [Google Scholar]
  • 26.Granoff D. M., McHugh Y. E., Raff H. V., Mokatrin A. S., Van Nest G. A. MF59 adjuvant enhances antibody responses of infant baboons immunized with Haemophilus influenzae type b and Neisseria meningitidis group C oligosaccharide-CRM197 conjugate vaccine. Infect. Immun. 1997;65:1710–1715. doi: 10.1128/iai.65.5.1710-1715.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Ott G. Vaccine Design: The Subunit and Adjuvant Approach. New York: Plenum Press; 1995. [Google Scholar]
  • 28.Ott G., Radhakrishnan R., Fang J.-H., Hora M. The adjuvant MF59: a 10-year perspective. In: O'Hagan D. T., editor. Vaccine Adjuvants: Preparation Methods and Research Protocols. Totowa, NJ: Humana Press Inc.; 2000. pp. 211–228. [Google Scholar]
  • 29.O'Hagan D. T., Singh M., Kazzaz J., Ugozzoli M., Briones M., Donnelly J., Ott G. Synergistic adjuvant activity of immuno-stimulatory DNA and oil/water emulsions for immunization with HIV p55 gag antigen. Vaccine. 2002;20:3389–3398. doi: 10.1016/s0264-410x(02)00272-4. [DOI] [PubMed] [Google Scholar]
  • 30.Cherpelis S., Shrivastava I., Gettie A., Jin X., Ho D. D., Barnett S. W., Stamatatos L. DNA vaccination with the human immunodeficiency virus type 1 SF162DeltaV2 envelope elicits immune responses that offer partial protection from simian/ human immunodeficiency virus infection to CD8(+) T-cell-depleted rhesus macaques. J. Virol. 2001;75:1547–1550. doi: 10.1128/JVI.75.3.1547-1550.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31.A. V. E. G. P. T.-. AIDS. Cellular and humoral immune responses to a canarypox vaccine containing human immunodeficiency virus type 1 Env, Gag, and Pro in combination with rgp120. J. Infect. Dis. 2001;183:563–570. doi: 10.1086/318523. [DOI] [PubMed] [Google Scholar]
  • 32.Johnson O. L., Cleland J. L., Lee H. J., Charnis M., Duenas E., Jaworowicz W., Shepard D., Shahzamani A., Jones A. J., Putney S. D. A month-long effect from a single injection of microencapsulated human growth hormone. Nat. Med. 1996;2:795–799. doi: 10.1038/nm0796-795. [DOI] [PubMed] [Google Scholar]
  • 33.Tabata Y., Ikada Y. Macrophage phagocytosis of biodegradable microspheres composed of L-lactic acid/glycolic acid homo-and copolymers. J. Biomed. Mater. Res. 1988;22:837–858. doi: 10.1002/jbm.820221002. [DOI] [PubMed] [Google Scholar]
  • 34.Newman K. D., Elamanchili P., Kwon G. S., Samuel J. Uptake of poly(D,L-lactic-co-glycolic acid) microspheres by antigen-presenting cells in vivo. J. Biomed. Mater. Res. 2002;60:480–486. doi: 10.1002/jbm.10019. [DOI] [PubMed] [Google Scholar]
  • 35.Randolph G. J., Inaba K., Robbiani D. F., Steinman R. M., Muller W. A. Differentiation of phagocytic monocytes into lymph node dendritic cells in vivo. Immunity. 1999;11:753–761. doi: 10.1016/s1074-7613(00)80149-1. [DOI] [PubMed] [Google Scholar]
  • 36.Eldridge J. H., Staas J. K., Meulbroek J. A., Tice T. R., Gilley R. M. Biodegradable and biocompatible poly(DL-lactide-coglycolide) microspheres as an adjuvant for staphylococcal enterotoxin B toxoid which enhances the level of toxin-neutralizing antibodies. Infect. Immun. 1991;59:2978–2986. doi: 10.1128/iai.59.9.2978-2986.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37.O'Hagan D. T., Rahman D., McGee J. P., Jeffery H., Davies M. C., Williams P., Davis S. S., Challacombe S. J. Biodegradable microparticles as controlled release antigen delivery systems. Immunology. 1991;73:239–242. [PMC free article] [PubMed] [Google Scholar]
  • 38.Maloy K. J., Donachie A. M., O'Hagan D. T., Mowat A. M. Induction of mucosal and systemic immune responses by immunization with ovalbumin entrapped in poly(lactide-co-glycolide) microparticles. Immunology. 1994;81:661–667. [PMC free article] [PubMed] [Google Scholar]
  • 39.Moore A., McGuirk P., Adams S., Jones W. C., McGee J. P., O'Hagan D. T., Mills K. H. Immunization with a soluble recombinant HIV protein entrapped in biodegradable microparticles induces HIV-specific CD8+ cytotoxic T lymphocytes and CD4+ Th1 cells. Vaccine. 1995;13:1741–1749. doi: 10.1016/0264-410x(95)00184-3. [DOI] [PubMed] [Google Scholar]
  • 40.Falo L. D., Kovacsovicsbankowski M., Thompson K., Rock K. L. Targeting antigen into the phagocytic pathway in-vivo induces protective tumor-immunity. Nat. Med. 1995;1:649–653. doi: 10.1038/nm0795-649. [DOI] [PubMed] [Google Scholar]
  • 41.O'Hagan D. T. Microparticles and polymers for the mucosal delivery of vaccines. Adv. Drug Deliv. Rev. 1998;34:305–320. doi: 10.1016/s0169-409x(98)00045-3. [DOI] [PubMed] [Google Scholar]
  • 42.O'Hagan D., ingh M. S. Microparticles as vaccine adjuvants and delivery systems. Expert Review Vaccines. 2003;2:269–283. doi: 10.1586/14760584.2.2.269. [DOI] [PubMed] [Google Scholar]
  • 43.Schwendeman S. P. Recent advances in the stabilization of proteins encapsulated in injectable PLGA delivery systems. Crit. Rev. Ther. Drug Carrier Syst. 2002;19:73–98. doi: 10.1615/critrevtherdrugcarriersyst.v19.i1.20. [DOI] [PubMed] [Google Scholar]
  • 44.Kazzaz J., Neidleman J., Singh M., Ott G., O'Hagan D. T. Novel anionic microparticles are a potent adjuvant for the induction of cytotoxic T lymphocytes against recombinant p55 gag from HIV-1. J. Control. Release. 2000;67:347–356. doi: 10.1016/s0168-3659(00)00226-1. [DOI] [PubMed] [Google Scholar]
  • 45.Otten G. R., Schaefer M., Greer C., Calderon-Cacia M., Coit D., Kazzaz J., Medina-Selby A., Selby M., Singh M., Ugozzoli M., zur Megede J., Barnett S., O'Hagan D., Donnelly J., Ulmer J. B. Induction of broad and potent anti-HIV immune responses in rhesus macaques by priming with a DNA vaccine and boosting with protein-adsorbed PLG microparticles. J. Virol. 2003;77:6087–6092. doi: 10.1128/JVI.77.10.6087-6092.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 46.Singh M., Kazzaz J., Chesko J., Soenawan E., Ugozzoli M., Giuliani M. M., Pizza M., Rappuoli R., O'Hagan D. Anionic microparticles are a potent delivery system for recombinant antigens from neisseria meningitidis serotype B. J. Pharm. Sci. 2004;93:273–282. doi: 10.1002/jps.10538. [DOI] [PubMed] [Google Scholar]
  • 47.Wang R., Doolan D. L., Le T. P., Hedstrom R. C., Coonan K. M., Charoenvit Y., Jones T. R., Hobart P., Margalith M., Ng J., Weiss W. R., Sedegah M., de Taisne C., Norman J. A., Hoffman S. L. Induction of antigen-specific cytotoxic T lymphocytes in humans by a malaria DNA vaccine. Science. 1998;282:476–480. doi: 10.1126/science.282.5388.476. [DOI] [PubMed] [Google Scholar]
  • 48.Le T. P., Coonan K. M., Hedstrom R. C., Charoenvit Y., Sedegah M., Epstein J. E., Kumar S., Wang R., Doolan D. L., Maguire J. D., Parker S. E., Hobart P., Norman J., Hoffman S. L. Safety, tolerability and humoral immune responses after intra-muscular administration of a malaria DNA vaccine to healthy adult volunteers. Vaccine. 2000;18:1893–1901. doi: 10.1016/s0264-410x(99)00407-7. [DOI] [PubMed] [Google Scholar]
  • 49.Martinez X., Brandt C., Saddallah F., Tougne C., Barrios C., Wild F., Dougan G., Lambert P. H., Siegrist C. A. DNA immunization circumvents deficient induction of t helper type 1 and cytotoxic t lymphocyte responses in neonates and during early life. Proc.s Natl. Acad. Sci. USA. 1997;94:8726–8731. doi: 10.1073/pnas.94.16.8726. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 50.Singh M., Briones M., Ott G., O'Hagan D. Cationic microparticles: A potent delivery system for DNA vaccines. Proc. Natl. Acad. Sci. USA. 2000;97:811–816. doi: 10.1073/pnas.97.2.811. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 51.O'Hagan D., Singh M., Ugozzoli M., Wild C., Barnett S., Chen M., Schaefer M., Doe B., Otten G. R., Ulmer J. B. Induction of potent immune responses by cationic microparticles with adsorbed human immunodeficiency virus DNA vaccines. J. Virol. 2001;75:9037–9043. doi: 10.1128/JVI.75.19.9037-9043.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 52.Denis-Mize K. S., Dupuis M., MacKichan M. L., Singh M., Doe B., O'Hagan D., Ulmer J. B., Donnelly J. J., McDonald D. M., Ott G. Plasmid DNA adsorbed onto cationic microparticles mediates target gene expression and antigen presentation by dendritic cells. Gene Ther. 2000;7:2105–2112. doi: 10.1038/sj.gt.3301347. [DOI] [PubMed] [Google Scholar]
  • 53.Denis-Mize K., Dupuis M., Singh M., Woo C., Ugozzoli M., O'Hagan D., Donnelly J., Ott G., McDonald D. M. Mechanisms of Increased Immunogenicity for DNA-Based Vaccines Absorbed onto Cationic Microparticles. Cell. Immunol. 2003;225:12–20. doi: 10.1016/j.cellimm.2003.09.003. [DOI] [PubMed] [Google Scholar]
  • 54.Hedley M. L., Curley J., Urban R. Microspheres containing plasmid-encoded antigens elicit cytotoxic T-cell responses. Nat. Med. 1998;4:365–368. doi: 10.1038/nm0398-365. [DOI] [PubMed] [Google Scholar]
  • 55.Ando S., Putnam D., Pack D. W., Langer R. PLGA microspheres containing plasmid DNA: preservation of supercoiled DNA via cryopreparation and carbohydrate stabilization. J. Pharm. Sci. 1999;88:126–130. doi: 10.1021/js9801687. [DOI] [PubMed] [Google Scholar]
  • 56.O'Hagan D., Singh M., Ugozzoli M., Wild C., Barnett S., Chen M., Otten G. R., Ulmer J. B. Induction of potent immune responses by cationic microparticles with adsorbed HIV DNA vaccines. J. Virol. 2001;75:9037–9043. doi: 10.1128/JVI.75.19.9037-9043.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 57.Briones M., Singh M., Ugozzoli M., Kazzaz J., Klakamp S., Ott G., O'Hagan D. The preparation, characterization, and evaluation of cationic microparticles for DNA vaccine delivery. Pharm. Res. 2001;18:709–711. doi: 10.1023/a:1011053931523. [DOI] [PubMed] [Google Scholar]
  • 58.Singh M., Ugozzoli M., Briones M., Kazzaz J., Soenawan E., O'Hagan D. The effect of CTAB concentration in cationic PLG microparticles on DNA adsorption and in vivo performance. Pharm. Res. 2003;20:244–248. doi: 10.1023/a:1022327305369. [DOI] [PubMed] [Google Scholar]
  • 59.Singh M., Ott G., Kazzaz J., Ugozzoli M., Briones M., Donnelly J., O'Hagan D. T. Cationic microparticles are an effective delivery system for immune stimulatory CpG DNA. Pharm. Res. 2001;18:1476–1479. doi: 10.1023/a:1012269226066. [DOI] [PubMed] [Google Scholar]
  • 60.Ott G., Singh M., Kazzaz J., Briones M., Soenawan E., Ugozzoli M., O'Hagan D. T. A cationic sub-micron emulsion (MF59/DOTAP) is an effective delivery system for DNA vaccines. J. Control. Release. 2002;79:1–5. doi: 10.1016/s0168-3659(01)00545-4. [DOI] [PubMed] [Google Scholar]
  • 61.Michalek S. M., O'Hagan D. T., Gould-Fogerite S., Rimmelzwaan G. F., Osterhaus A. D. M. E. Antigen delivery systems: nonliving microparticles, liposomes, cochleates, and IS-COMS. In: Ogra P. L., Mestecky J., Lamm M. E., Strober W., Bienenstrock J., McGhee J. R., editors. Mucosal Immunology. San Diego: Academic Press; 1999. pp. 759–778. [Google Scholar]
  • 62.Singh M., O'Hagan D. T. Recent advances in vaccine adjuvants. Pharm. Res. 2002;19:715–728. doi: 10.1023/a:1016104910582. [DOI] [PubMed] [Google Scholar]
  • 63.Rappuoli R., Pizza M., Douce G., Dougan G. Structure and mucosal adjuvanticity of cholera and Escherichia coli heat-labile enterotoxins. Immunol. Today. 1999;20:493–500. doi: 10.1016/s0167-5699(99)01523-6. [DOI] [PubMed] [Google Scholar]
  • 64.Pizza M., Giuliani M. M., Fontana M. R., Monaci E., Douce G., Dougan G., Mills K. H., Rappuoli R., Del Giudice G. Mucosal vaccines: non toxic derivatives of LT and CT as mucosal adjuvants. Vaccine. 2001;19:2534–2541. doi: 10.1016/s0264-410x(00)00553-3. [DOI] [PubMed] [Google Scholar]
  • 65.Jakobsen H., Bjarnarson S., Del Giudice G., Moreau M., Siegrist C. A., Jonsdottir I. Intranasal immunization with pneumococcal conjugate vaccines with LT-K63, a nontoxic mutant of heat-Labile enterotoxin, as adjuvant rapidly induces protective immunity against lethal pneumococcal infections in neonatal mice. Infect. Immun. 2002;70:1443–1452. doi: 10.1128/IAI.70.3.1443-1452.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 66.Peppoloni S., Ruggiero P., Contorni M., Morandi M., Pizza M., Rappuoli R., Podda A., Del Giudice G. Mutants of the Escherichia coli heat-labile enterotoxin as safe and strong adjuvants for intranasal delivery of vaccines. Expert Review Vaccines. 2003;2:285–293. doi: 10.1586/14760584.2.2.285. [DOI] [PubMed] [Google Scholar]
  • 67.Baudner B. C., Balland O., Giuliani M. M., Von Hoegen P., Rappuoli R., Betbeder D., Del Giudice G. Enhancement of protective efficacy following intranasal immunization with vaccine plus a nontoxic LTK63 mutant delivered with nanoparticles. Infect. Immun. 2002;70:4785–4790. doi: 10.1128/IAI.70.9.4785-4790.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 68.Singh M., Briones M., O'Hagan D. T. A novel bioadhesive intranasal delivery system for inactivated influenza vaccines. J. Control. Release. 2001;70:267–276. doi: 10.1016/s0168-3659(00)00330-8. [DOI] [PubMed] [Google Scholar]
  • 69.Ugozzoli M., Santos G., Donnelly J., O'Hagan D. T. Potency of a genetically detoxified mucosal adjuvant derived from the heat-labile enterotoxin of Escherichia coli (LTK63) is not adversely affected by the presence of preexisting immunity to the adjuvant. J. Infect. Dis. 2001;183:351–354. doi: 10.1086/317923. [DOI] [PubMed] [Google Scholar]
  • 70.Mills K. H., Cosgrove C., McNeela E. A., Sexton A., Giemza R., Jabbal-Gill I., Church A., Lin W., Illum L., Podda A., Rappuoli R., Pizza M., Griffin G. E., Lewis D. J. Protective levels of diphtheria-neutralizing antibody induced in healthy volunteers by unilateral priming-boosting intranasal immunization associated with restricted ipsilateral mucosal secretory immuno-globulin a. Infect. Immun. 2003;71:726–732. doi: 10.1128/IAI.71.2.726-732.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 71.Baudner B. C., Giuliani M. M., Verhoef J. C., Rappuoli R., Junginger H. E., Giudice G. D. The concomitant use of the LTK63 mucosal adjuvant and of chitosan-based delivery system enhances the immunogenicity and efficacy of intranasally administered vaccines. Vaccine. 2003;21:3837–3844. doi: 10.1016/s0264-410x(03)00305-0. [DOI] [PubMed] [Google Scholar]
  • 72.Douce G., Giannelli V., Pizza M., Lewis D., Everest P., Rappuoli R., Dougan G. Genetically detoxified mutants of heat-labile toxin from Escherichia coli are able to act as oral adjuvants. Infect. Immun. 1999;67:4400–4406. doi: 10.1128/iai.67.9.4400-4406.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 73.Barackman J. D., Ott G., Pine S., O'Hagan D. T. Oral administration of influenza vaccine in combination with the adjuvants LT-K63 and LT-R72 induces potent immune responses comparable to or stronger than traditional intramuscular immunization. Clin. Diagn. Lab. Immunol. 2001;8:652–657. doi: 10.1128/CDLI.8.3.652-657.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 74.Clemens J. D., Sack D. A., Harris J. R., Van Loon F., Chakraborty J., Ahmed F., Rao M. R., Khan M. R., Yunus M., Huda N., et al. Field trial of oral cholera vaccines in Bangladesh: results from three-year follow-up. Lancet. 1990;335:270–273. doi: 10.1016/0140-6736(90)90080-o. [DOI] [PubMed] [Google Scholar]
  • 75.Jertborn M., Ahren C., Holmgren J., Svennerholm A. M. Safety and immunogenicity of an oral inactivated enterotoxigenic Escherichia coli vaccine. Vaccine. 1998;16:255–260. doi: 10.1016/s0264-410x(97)00169-2. [DOI] [PubMed] [Google Scholar]
  • 76.Van Deusen M. A., Angelini B. L., Cordoro K. M., Seiler B. A., Wood L., Skoner D. P. Efficacy and safety of oral immunotherapy with short ragweed extract. Ann. Allergy Asthma Immunol. 1997;78:573–580. doi: 10.1016/S1081-1206(10)63218-8. [DOI] [PubMed] [Google Scholar]
  • 77.O'Hagan D. Microparticles and polymers for the mucosal delivery of vaccines. Adv. Drug Deliv. Rev. 1998;34:305–320. doi: 10.1016/s0169-409x(98)00045-3. [DOI] [PubMed] [Google Scholar]
  • 78.Jain S. L., Barone K. S., Flanagan M. P., Michael J. G. Activation patterns of murine B cells after oral administration of an encapsulated soluble antigen. Vaccine. 1996;14:1291–1297. doi: 10.1016/0264-410x(96)88807-4. [DOI] [PubMed] [Google Scholar]
  • 79.Katz D. E., DeLorimier A. J., Wolf M. K., Hall E. R., Cassels F. J., van Hamont J. E., Newcomer R. L., Davachi M. A., Taylor D. N., McQueen C. E. Oral immunization of adult volunteers with microencapsulated enterotoxigenic Escherichia coli (ETEC) CS6 antigen. Vaccine. 2003;21:341–346. doi: 10.1016/s0264-410x(02)00613-8. [DOI] [PubMed] [Google Scholar]
  • 80.Holmgren J., Czerkinsky C., Eriksson K., Mharandi A. Mucosal immunisation and adjuvants: a brief overview of recent advances and challenges. Vaccine. 2003;21:S89–S95. doi: 10.1016/s0264-410x(03)00206-8. [DOI] [PubMed] [Google Scholar]
  • 81.Sabin A. B., Flores Arechiga A., Fernandez de Castro J., Sever J. L., Madden D. L., Shekarchi I., Albrecht P. Successful immunization of children with and without maternal antibody by aerosolized measles vaccine. I. Different results with undiluted human diploid cell and chick embryo fibroblast vaccines. JAMA. 1983;249:2651–2662. [PubMed] [Google Scholar]
  • 82.Dilraj A., Cutts F. T., de Castro J. F., Wheeler J. G., Brown D., Roth C., Coovadia H. M., Bennett J. V. Response to different measles vaccine strains given by aerosol and subcutaneous routes to schoolchildren: a randomised trial. Lancet. 2000;355:798–803. doi: 10.1016/s0140-6736(99)95140-1. [DOI] [PubMed] [Google Scholar]
  • 83.Cutts F. T., Henao-Restrepo A., Olive J. M. Measles elimination: progress and challenges. Vaccine. 1999;17:S47–S52. doi: 10.1016/s0264-410x(99)00309-6. [DOI] [PubMed] [Google Scholar]
  • 84.Sepulveda-Amor J., Valdespino-Gomez J. L., Garcia-Garcia Mde L., Bennett J., Islas-Romero R., Echaniz-Aviles G., de Castro J. F. A randomized trial demonstrating successful boosting responses following simultaneous aerosols of measles and rubella (MR) vaccines in school age children. Vaccine. 2002;20:2790–2795. doi: 10.1016/s0264-410x(02)00179-2. [DOI] [PubMed] [Google Scholar]
  • 85.Canter J., Mackey K., Good L. S., Roberto R. R., Chin J., Bond W. W., Alter M. J., Horan J. M. An outbreak of hepatitis B associated with jet injections in a weight reduction clinic. Arch. Intern. Med. 1990;150:1923–1927. [PubMed] [Google Scholar]
  • 86.Jackson L. A., Austin G., Chen R. T., Stout R., DeStefano F., Gorse G. J., Newman F. K., Yu O., Weniger B. G. Safety and immunogenicity of varying dosages of trivalent inactivated influenza vaccine administered by needle-free jet injectors. Vaccine. 2001;19:4703–4709. doi: 10.1016/s0264-410x(01)00225-0. [DOI] [PubMed] [Google Scholar]
  • 87.Parent du Chatelet I., Lang J., Schlumberger M., Vidor E., Soula G., Genet A., Standaert S. M., Saliou P. Clinical immunogenicity and tolerance studies of liquid vaccines delivered by jet-injector and a new single-use cartridge (Imule): comparison with standard syringe injection. Imule Investigators Group. Vaccine. 1997;15:449–458. doi: 10.1016/s0264-410x(96)00173-9. [DOI] [PubMed] [Google Scholar]
  • 88.Chen D., Endres R. L., Erickson C. A., Weis K. F., McGregor M. W., Kawaoka Y., Payne L. G. Epidermal immunization by a needle-free powder delivery technology: immunogenicity of influenza vaccine and protection in mice. Nat. Med. 2000;6:1187–1190. doi: 10.1038/80538. [DOI] [PubMed] [Google Scholar]
  • 89.Chen D., Endres R., Maa Y. F., Kensil C. R., Whitaker-Dowling P., Trichel A., Youngner J. S., Payne L. G. Epidermal powder immunization of mice and monkeys with an influenza vaccine. Vaccine. 2003;21:2830–2836. doi: 10.1016/s0264-410x(03)00175-0. [DOI] [PubMed] [Google Scholar]
  • 90.Maa Y. F., Zhao L., Payne L. G., Chen D. Stabilization of alum-adjuvanted vaccine dry powder formulations: mechanism and application. J. Pharm. Sci. 2003;92:319–332. doi: 10.1002/jps.10294. [DOI] [PubMed] [Google Scholar]
  • 91.Epstein J. E., Gorak E. J., Charoenvit Y., Wang R., Freydberg N., Osinowo O., Richie T. L., Stoltz E. L., Trespalacios F., Nerges J., Ng J., Fallarme-Majam V., Abot E., Goh L., Parker S., Kumar S., Hedstrom R. C., Norman J., Stout R., Hoffman S. L. Safety, tolerability, and lack of antibody responses after administration of a PfCSP DNA malaria vaccine via needle or needle-free jet injection, and comparison of intramuscular and combination intramuscular/intradermal routes. Hum. Gene Ther. 2002;13:1551–1560. doi: 10.1089/10430340260201644. [DOI] [PubMed] [Google Scholar]
  • 92.Roy M. J., Wu M. S., Barr L. J., Fuller J. T., Tussey L. G., Speller S., Culp J., Burkholder J. K., Swain W. F., Dixon R. M., Widera G., Vessey R., King A., Ogg G., Gallimore A., Haynes J. R., Heydenburg Fuller D. Induction of antigen-specific CD8+ T cells, T helper cells, and protective levels of antibody in humans by particle-mediated administration of a hepatitis B virus DNA vaccine. Vaccine. 2000;19:764–778. doi: 10.1016/s0264-410x(00)00302-9. [DOI] [PubMed] [Google Scholar]
  • 93.Heineman T. C., Clements-Mann M. L., Poland G. A., Jacobson R. M., Izu A. E., Sakamoto D., Eiden J., Van Nest G. A., Hsu H. H. A randomized, controlled study in adults of the immunogenicity of a novel hepatitis B vaccine containing MF59 adjuvant. Vaccine. 1999;17:2769–2778. doi: 10.1016/s0264-410x(99)00088-2. [DOI] [PubMed] [Google Scholar]
  • 94.McCluskie M. J., Brazolot Millan C. L., Gramzinski R. A., Robinson H. L., Santoro J. C., Fuller J. T., Widera G., Haynes J. R., Purcell R. H., Davis H. L. Route and method of delivery of DNA vaccine influence immune responses in mice and non-human primates. Mol. Med. 1999;5:287–300. [PMC free article] [PubMed] [Google Scholar]
  • 95.Arrington J., Braun R. P., Dong L., Fuller D. H., Macklin M. D., Umlauf S. W., Wagner S. J., Wu M. S., Payne L. G., Haynes J. R. Plasmid vectors encoding cholera toxin or the heat-labile enterotoxin from Escherichia coli are strong adjuvants for DNA vaccines. J. Virol. 2002;76:4536–4546. doi: 10.1128/JVI.76.9.4536-4546.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 96.Mikszta J. A., Alarcon J. B., Brittingham J. M., Sutter D. E., Pettis R. J., Harvey N. G. Improved genetic immunization via micromechanical disruption of skin-barrier function and targeted epidermal delivery. Nat. Med. 2002;8:415–419. doi: 10.1038/nm0402-415. [DOI] [PubMed] [Google Scholar]
  • 97.Matriano J. A., Cormier M., Johnson J., Young W. A., Buttery M., Nyam K., Daddona P. E. Macroflux microprojection array patch technology: a new and efficient approach for intracutaneous immunization. Pharm. Res. 2002;19:63–70. doi: 10.1023/a:1013607400040. [DOI] [PubMed] [Google Scholar]
  • 98.Glenn G. M., Rao M., Matyas G. R., Alving C. R. Skin immunization made possible by cholera toxin. Nature. 1998;391:851. doi: 10.1038/36014. [DOI] [PubMed] [Google Scholar]
  • 99.Glenn G. M., Taylor D. N., Li X., Frankel S., Montemarano A., Alving C. R. Transcutaneous immunization: a human vaccine delivery strategy using a patch. Nat. Med. 2000;6:1403–1406. doi: 10.1038/82225. [DOI] [PubMed] [Google Scholar]
  • 100.Guerena-Burgueno F., Hall E. R., Taylor D. N., Cassels F. J., Scott D. A., Wolf M. K., Roberts Z. J., Nesterova G. V., Alving C. R., Glenn G. M. Safety and immunogenicity of a prototype enterotoxigenic Escherichia coli vaccine administered transcutaneously. Infect. Immun. 2002;70:1874–1880. doi: 10.1128/IAI.70.4.1874-1880.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 101.Scharton-Kersten T., Yu J., Vassell R., O'Hagan D., Alving C. R., Glenn G. M. Transcutaneous immunization with bacterial ADP-ribosylating exotoxins, subunits, and unrelated adjuvants. Infect. Immun. 2000;68:5306–5313. doi: 10.1128/iai.68.9.5306-5313.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 102.Tierney R., Beignon A. S., Rappuoli R., Muller S., Sesardic D., Partidos C. D. Transcutaneous immunization with tetanus toxoid and mutants of Escherichia coli heat-labile enterotoxin as adjuvants elicits strong protective antibody responses. J. Infect. Dis. 2003;188:753–758. doi: 10.1086/377287. [DOI] [PubMed] [Google Scholar]
  • 103.Guebre-Xabier M., Hammond S. A., Epperson D. E., Yu J., Ellingsworth L., Glenn G. M. Immunostimulant patch containing heat-labile enterotoxin from Escherichia coli enhances immune responses to injected influenza virus vaccine through activation of skin dendritic cells. J. Virol. 2003;77:5218–5225. doi: 10.1128/JVI.77.9.5218-5225.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 104.Dziekan G., Chisholm D., Johns B., Rovira J., Hutin Y. J. The cost-effectiveness of policies for the safe and appropriate use of injection in healthcare settings. Bull. World Health Organ. 2003;81:277–285. [PMC free article] [PubMed] [Google Scholar]

Articles from Pharmaceutical Research are provided here courtesy of Nature Publishing Group

RESOURCES