Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 2012 Sep 27;55(9):826–833. doi: 10.1007/s11427-012-4371-2

A glimpse of enzymology within the idea of systems

ChuanPeng Liu 1,, DongJie Fan 2, Yi Shi 3, QiMing Zhou 4
PMCID: PMC7088909  PMID: 23015132

The content is available as a PDF (469.6 KB).

Footnotes

Contributed equally to this work

This article is published with open access at Springerlink.com

References

  • 1.Michaelis L., Menten M. L. Die Kinetik der Invertinwirkung. Biochem Z. 1913;49:333–369. [Google Scholar]
  • 2.Zalatan J. G., Herschlag D. The far reaches of enzymology. Nat Chem Biol. 2009;5:516–520. doi: 10.1038/nchembio0809-516. [DOI] [PubMed] [Google Scholar]
  • 3.Derouiche A, Cousin C, Mijakovic I. Protein phosphorylation from the perspective of systems biology. Curr Opin Biotechnol, 2011, 24, doi: 10.1016/j.copbio.2011.11.008 [DOI] [PubMed]
  • 4.Han Y. F., Yang Q., Zhang S. W., et al. Receptor-like kinase CrRLK1-L subfamily: novel motifs in extracellular domain and biological functions in plants. Prog Biochem Biophys. 2011;38:891–899. doi: 10.3724/SP.J.1206.2011.00085. [DOI] [Google Scholar]
  • 5.Tu L. H., Liu H. P., Luo J. A new family of regulators of calcineurin (RCANs) Prog Biochem Biophys. 2010;37:22–28. doi: 10.3724/SP.J.1206.2009.00287. [DOI] [Google Scholar]
  • 6.Ding S. H., Yin X. M., Shi J. H., et al. GSK-3β modulates 9G8-mediated alternative splicing of tau exon 10. Prog Biochem Biophys. 2010;37:161–166. doi: 10.3724/SP.J.1206.2009.00528. [DOI] [Google Scholar]
  • 7.Xie M., Chen Q. C., Liao X. M. The protective effects of ubiquitin C-terminal hydrolase L1 on neurons. Prog Biochem Biophys. 2010;37:1054–1058. doi: 10.3724/SP.J.1206.2010.00253. [DOI] [Google Scholar]
  • 8.Sun L., Yang Y. D., Liu D. B., et al. Deubiquitinase activity and regulation of antiviral innate immune responses by papain-like proteases of human coronavirus NL63. Prog Biochem Biophys. 2010;37:871–880. doi: 10.3724/SP.J.1206.2010.00111. [DOI] [Google Scholar]
  • 9.Wang C. J., Lin J., Zhang J. J. Progress in the study of prokaryotic ubiquitin-like protein (Pup)-proteasome system. Prog Biochem Biophys. 2011;38:1091–1098. doi: 10.3724/SP.J.1206.2011.00110. [DOI] [Google Scholar]
  • 10.Guo X. Q. The function of PRDM9 on mammalian recombination hotspots. Prog Biochem Biophys. 2010;37:929–931. doi: 10.3724/SP.J.1206.2010.00224. [DOI] [Google Scholar]
  • 11.Peng Q., Chen W. C., Liu X. G. Advances in relationship between deacetylase (Sirtuin) and aging. Prog Biochem Biophys. 2010;37:1271–1277. doi: 10.3724/SP.J.1206.2010.00241. [DOI] [Google Scholar]
  • 12.Zhang Y. J., Jiang J. H., Xie J., et al. Lysyl oxidases related to human diseases. Prog Biochem Biophys. 2011;38:389–399. doi: 10.3724/SP.J.1206.2010.00468. [DOI] [Google Scholar]
  • 13.Chen J. W., Zuo Q. H., Ji L., et al. The research advances in ubiquitin-independent degradation of proteins. Prog Biochem Biophys. 2011;38:593–603. doi: 10.3724/SP.J.1206.2010.00569. [DOI] [Google Scholar]
  • 14.Wu W. S., Zheng X., Duan X. L., et al. Transmembrane serine proteases 6: a newly discovered hepcidin regulator. Prog Biochem Biophys. 2010;37:235–238. doi: 10.3724/SP.J.1206.2009.00584. [DOI] [Google Scholar]
  • 15.Mason S. D., Joyce J. A. Proteolytic networks in cancer. Trends Cell Biol. 2011;21:228–237. doi: 10.1016/j.tcb.2010.12.002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Tian X., Li C., Li Y. Y., et al. Analysis of inhibitory activity and antineoplastic effect of wild type rBTI and its mutants. Prog Biochem Biophys. 2010;37:654–661. doi: 10.3724/SP.J.1206.2009.00731. [DOI] [Google Scholar]
  • 17.Lu Y., Luo F., Yang M., et al. Suppression of glutamate synthase genes significantly affects carbon and nitrogen metabolism in rice (Oryza sativa L.) Sci China Life Sci. 2011;54:651–663. doi: 10.1007/s11427-011-4191-9. [DOI] [PubMed] [Google Scholar]
  • 18.Sun S. N., Gui Y. H., Jiang Q., et al. The effects of dihydrofolate reductase gene on the development of pharyngeal arches. Prog Biochem Biophys. 2010;37:145–153. doi: 10.3724/SP.J.1206.2009.00409. [DOI] [Google Scholar]
  • 19.Li B., Zhang D., Zeng J., et al. A mutation of testis-specific lactate dehydrogenase gene found in male patients with unexplained infertility. Prog Biochem Biophys. 2010;37:445–450. doi: 10.3724/SP.J.1206.2009.00526. [DOI] [Google Scholar]
  • 20.Heinemann M., Sauer U. Systems biology of microbial metabolism. Curr Opin Microbiol. 2010;13:337–343. doi: 10.1016/j.mib.2010.02.005. [DOI] [PubMed] [Google Scholar]
  • 21.Gerosa L., Sauer U. Regulation and control of metabolic fluxes in microbes. Curr Opin Biotechnol. 2011;22:566–575. doi: 10.1016/j.copbio.2011.04.016. [DOI] [PubMed] [Google Scholar]
  • 22.Ginsberg G., Guyton K., Johns D., et al. Genetic polymorphism in metabolism and host defense enzymes: implications for human health risk assessment. Crit Rev Toxicol. 2010;40:575–619. doi: 10.3109/10408441003742895. [DOI] [PubMed] [Google Scholar]
  • 23.Hao D., Xiao P., Chen S. Phenotype prediction of nonsynonymous single nucleotide polymorphisms in human phase II drug/xenobiotic metabolizing enzymes: perspectives on molecular evolution. Sci China Life Sci. 2010;53:1252–1262. doi: 10.1007/s11427-010-4062-9. [DOI] [PubMed] [Google Scholar]
  • 24.Luo H., Chen X., Ding M., et al. Study on the mechanism of effects of lomefloxacin on biological properties of bloom syndrome helicase. Prog Biochem Biophys. 2011;38:1060–1071. doi: 10.3724/SP.J.1206.2011.00178. [DOI] [Google Scholar]
  • 25.Hu J. P., Liu W., Tang D. Y., et al. Study on the binding mode and mobility of HIV-1 integrase with L708, 906 inhibitor. Prog Biochem Biophys. 2011;38:338–346. doi: 10.3724/SP.J.1206.2010.00438. [DOI] [Google Scholar]
  • 26.He H., Liu B., Zhang X., et al. Development of a high-throughput assay for the HIV-1 integrase disintegration reaction. Sci China Life Sci. 2010;53:241–247. doi: 10.1007/s11427-010-0006-7. [DOI] [PubMed] [Google Scholar]
  • 27.Lu L. N., Tang T. S., Guo C. X. Advances of study on translesion DNA synthesis polymerase kappa in mammalian cells. Prog Biochem Biophys. 2011;38:204–209. doi: 10.3724/SP.J.1206.2010.00533. [DOI] [Google Scholar]
  • 28.Fan S. H., Shan L. W., Wang B. L., et al. Preparation and characterization of T7 endonuclease I with single active domain. Prog Biochem Biophys. 2010;37:426–432. doi: 10.3724/SP.J.1206.2009.00580. [DOI] [Google Scholar]
  • 29.Martínez-Espinosa R. M., Cole J. A., Richardson D. J., et al. Enzymology and ecology of the nitrogen cycle. Biochem Soc Trans. 2011;39:175–178. doi: 10.1042/BST0390175. [DOI] [PubMed] [Google Scholar]
  • 30.Weedon J. T., Aerts R., Kowalchuk G. A., et al. Enzymology under global change: organic nitrogen turnover in alpine and sub-Arctic soils. Biochem Soc Trans. 2011;39:309–314. doi: 10.1042/BST0390309. [DOI] [PubMed] [Google Scholar]
  • 31.Zhang H., Huang Y., Ye X., et al. Analysis of the contribution of acid phosphatase to P efficiency in Brassica napus under low phosphorus conditions. Sci China Life Sci. 2010;53:709–717. doi: 10.1007/s11427-010-4008-2. [DOI] [PubMed] [Google Scholar]
  • 32.Guo J., Wu G., Wan F. Temporal allocation of metabolic tolerance to transgenic Bt cotton in beet armyworm, Spodoptera exigua (Hübner) Sci China Life Sci. 2011;54:152–158. doi: 10.1007/s11427-010-4133-y. [DOI] [PubMed] [Google Scholar]
  • 33.Grassmann J., Scheerle R. K., Letzel T. Functional proteomics: application of mass spectrometry to the study of enzymology in complex mixtures. Anal Bioanal Chem. 2012;402:625–645. doi: 10.1007/s00216-011-5236-4. [DOI] [PubMed] [Google Scholar]
  • 34.Van Noorden C. J. Imaging enzymes at work: metabolic mapping by enzyme histochemistry. J Histochem Cytochem. 2010;58:481–497. doi: 10.1369/jhc.2010.955518. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35.Kovarik M. L., Allbritton N. L. Measuring enzyme activity in single cells. Trends Biotechnol. 2011;29:222–230. doi: 10.1016/j.tibtech.2011.01.003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.van Oijen A. M. Single-molecule approaches to characterizing kinetics of biomolecular interactions. Curr Opin Biotechnol. 2011;22:75–80. doi: 10.1016/j.copbio.2010.10.002. [DOI] [PubMed] [Google Scholar]
  • 37.Claessen V. I., Engelkamp H., Christianen P. C., et al. Single-biomolecule kinetics: the art of studying a single enzyme. Annu Rev Anal Chem. 2010;3:319–340. doi: 10.1146/annurev.anchem.111808.073638. [DOI] [PubMed] [Google Scholar]
  • 38.Chen Q., Groote R., Schönherr H., et al. Probing single enzyme kinetics in real-time. Chem Soc Rev. 2009;38:2671–2683. doi: 10.1039/b903638e. [DOI] [PubMed] [Google Scholar]
  • 39.Gershenson A. Single molecule enzymology: watching the reaction. Curr Opin Chem Biol. 2009;13:436–442. doi: 10.1016/j.cbpa.2009.06.011. [DOI] [PubMed] [Google Scholar]
  • 40.Chen W. W., Niepel M., Sorger P. K. Classic and contemporary approaches to modeling biochemical reactions. Genes Dev. 2010;24:1861–1875. doi: 10.1101/gad.1945410. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41.Cloots L., Marchal K. Network-based functional modeling of genomics, transcriptomics and metabolism in bacteria. Curr Opin Microbiol. 2011;14:599–607. doi: 10.1016/j.mib.2011.09.003. [DOI] [PubMed] [Google Scholar]
  • 42.Xu M. J., Zhu X. M., Lin B. H., et al. Generic enzymatic rate equation. Prog Biochem Biophys. 2011;38:759–767. doi: 10.3724/SP.J.1206.2010.00500. [DOI] [Google Scholar]
  • 43.Lee H. C. Cyclic ADP-ribose and NAADP: fraternal twin messengers for calcium signaling. Sci China Life Sci. 2011;54:699–711. doi: 10.1007/s11427-011-4197-3. [DOI] [PubMed] [Google Scholar]
  • 44.Bitanihirwe B. K., Woo T. U. Oxidative stress in schizophrenia: an integrated approach. Neurosci Biobehav Rev. 2011;35:878–893. doi: 10.1016/j.neubiorev.2010.10.008. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 45.Zhang M., Zhao Z., He L., et al. A meta-analysis of oxidative stress markers in schizophrenia. Sci China Life Sci. 2010;53:112–124. doi: 10.1007/s11427-010-0013-8. [DOI] [PubMed] [Google Scholar]
  • 46.Nagel Z. D., Klinman J. P. A 21st century revisionist’s view at a turning point in enzymology. Nat Chem Biol. 2009;5:543–550. doi: 10.1038/nchembio.204. [DOI] [PubMed] [Google Scholar]
  • 47.McGeagh J. D., Ranaghan K. E., Mulholland A. J. Protein dynamics and enzyme catalysis: insights from simulations. Biochim Biophys Acta. 2011;1814:1077–1092. doi: 10.1016/j.bbapap.2010.12.002. [DOI] [PubMed] [Google Scholar]
  • 48.Zhang Z. J., Pan R., Zhou Y., et al. “Induced fit-lock and key” model in enzymic reactions. Prog Biochem Biophys. 2011;38:418–426. doi: 10.3724/SP.J.1206.2011.00052. [DOI] [Google Scholar]
  • 49.Weber W., Fussenegger M. Emerging biomedical applications of synthetic biology. Nat Rev Genet. 2011;13:21–35. doi: 10.1038/ni.2184. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 50.Lee J. W., Na D., Park J. M., et al. Systems metabolic engineering of microorganisms for natural and non-natural chemicals. Nat Chem Biol. 2012;8:536–546. doi: 10.1038/nchembio.970. [DOI] [PubMed] [Google Scholar]
  • 51.Heal W. P., Dang T. H., Tate E. W. Activity-based probes: discovering new biology and new drug targets. Chem Soc Rev. 2011;40:246–257. doi: 10.1039/C0CS00004C. [DOI] [PubMed] [Google Scholar]
  • 52.Nomura D. K., Dix M. M., Cravatt B. F. Activity-based protein profiling for biochemical pathway discovery in cancer. Nat Rev Cancer. 2010;10:630–638. doi: 10.1038/nrc2901. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 53.Chang J. W., Nomura D. K., Cravatt B. F. A potent and selective inhibitor of KIAA1363/AADACL1 that impairs prostate cancer pathogenesis. Chem Biol. 2011;18:476–484. doi: 10.1016/j.chembiol.2011.02.008. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 54.Sun J. X., Liu Z. B. Heterologous expression and characterization of the carboxylesterase from Geobacillus stearothermophilus. Prog Biochem Biophys. 2010;37:967–974. doi: 10.3724/SP.J.1206.2010.00134. [DOI] [Google Scholar]
  • 55.Gerlt J. A., Allen K. N., Almo S. C., et al. The enzyme function initiative. Biochemistry. 2011;50:9950–9962. doi: 10.1021/bi201312u. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 56.Liu S. L., Zong M. H. (R)-oxynitrilase from Prunus salicina catalysed synthesis of (R)-ketone-cyanohydrin by enantioselective transcyanation. Prog Biochem Biophys. 2010;37:1212–1216. doi: 10.3724/SP.J.1206.2010.00147. [DOI] [Google Scholar]
  • 57.Khersonsky O., Tawfik D. S. Enzyme promiscuity: a mechanistic and evolutionary perspective. Annu Rev Biochem. 2010;79:471–505. doi: 10.1146/annurev-biochem-030409-143718. [DOI] [PubMed] [Google Scholar]
  • 58.Wu S., Ma J., Yang K., et al. A novel organic-inorganic hybrid monolith for trypsin immobilization. Sci China Life Sci. 2011;54:54–59. doi: 10.1007/s11427-010-4108-z. [DOI] [PubMed] [Google Scholar]
  • 59.Brady D., Jordaan J. Advances in enzyme immobilisation. Biotechnol Lett. 2009;31:1639–1650. doi: 10.1007/s10529-009-0076-4. [DOI] [PubMed] [Google Scholar]
  • 60.Dalby P. A. Strategy and success for the directed evolution of enzymes. Curr Opin Struct Biol. 2011;21:473–480. doi: 10.1016/j.sbi.2011.05.003. [DOI] [PubMed] [Google Scholar]
  • 61.Diaz-Rodriguez A., Davis B. G. Chemical modification in the creation of novel biocatalysts. Curr Opin Chem Biol. 2011;15:211–219. doi: 10.1016/j.cbpa.2010.12.002. [DOI] [PubMed] [Google Scholar]
  • 62.Otten L. G., Hollmann F., Arends I. W. Enzyme engineering for enantioselectivity: from trial-and-error to rational design? Trends Biotechnol. 2010;28:46–54. doi: 10.1016/j.tibtech.2009.10.001. [DOI] [PubMed] [Google Scholar]
  • 63.Saven J. G. Computational protein design: engineering molecular diversity, nonnatural enzymes, nonbiological cofactor complexes, and membrane proteins. Curr Opin Chem Biol. 2011;15:452–457. doi: 10.1016/j.cbpa.2011.03.014. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 64.Ajikumar P. K., Xiao W. H., Tyo K. E., et al. Isoprenoid pathway optimization for Taxol precursor overproduction in Escherichia coli. Science. 2010;330:70–74. doi: 10.1126/science.1191652. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 65.Zhu F., Liu Z., Chi X., et al. Protein trans-splicing based dual-vector delivery of the coagulation factor VIII gene. Sci China Life Sci. 2010;53:683–689. doi: 10.1007/s11427-010-4011-7. [DOI] [PubMed] [Google Scholar]
  • 66.Wang N., Wang Y., Li G., et al. Expression, characterization, and antimicrobial ability of T4 lysozyme from methylotrophic yeast Hansenula polymorpha A16. Sci China Life Sci. 2011;54:520–526. doi: 10.1007/s11427-011-4174-x. [DOI] [PubMed] [Google Scholar]
  • 67.Kwon S. J., Mora-Pale M., Lee M. Y., et al. Expanding nature’s small molecule diversity via in vitro biosynthetic pathway engineering. Curr Opin Chem Biol. 2012;16:186–195. doi: 10.1016/j.cbpa.2012.02.001. [DOI] [PubMed] [Google Scholar]
  • 68.Wong F. T., Khosla C. Combinatorial biosynthesis of polyketides—a perspective. Curr Opin Chem Biol. 2012;16:117–123. doi: 10.1016/j.cbpa.2012.01.018. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 69.Wang J. L., Wang L. S., Liu W. F., et al. Research advances on the assembly mode of cellulosomal macromolecular complexes. Prog Biochem Biophys. 2011;38:28–35. doi: 10.3724/SP.J.1206.2010.00278. [DOI] [Google Scholar]

Articles from Science China. Life Sciences are provided here courtesy of Nature Publishing Group

RESOURCES