Abstract
Synthetic biology is an emerging field, which, since its birth, has shown great value and potential in many fields including medicine, energy, environment and agriculture. It is also important for the study of the origin and evolution of life. Since the publication of the first synthetic cell in May, 2010, synthetic biology again attracts high attention and leads to extensive discussions all over the world. There have been a number of researches and achievements on synthetic biology in the United States and European countries. While in China, so far there is no systematic research on synthetic biology. In order to promote the development of this new discipline in China, we organized this review to systematically introduce the concept and research content of synthetic biology, summarize the achievements, and investigate the current situation in both China and abroad. We also analyzed the opportunities and challenges in synthetic biology, and looked forward to the future development of synthetic biology, especially its future development in China.
Keywords: synthetic cell, synthetic biology, minimal genome
Footnotes
This article is published with open access at Springerlink.com
References
- 1.Gibson D. G., Glass J. I., Lartigue C., et al. Creation of a bacterial cell controlled by a chemically synthesized genome. Science. 2010;329:52–56. doi: 10.1126/science.1190719. [DOI] [PubMed] [Google Scholar]
- 2.The Royal Academy of Engineering. Synthetic Biology: Scope, Applications and Implications. London: The Royal Academy of Engineering; 2009. [Google Scholar]
- 3.Benner S. A., Sismour A. M. Synthetic biology. Nat Rev Genet. 2005;438:533–543. doi: 10.1038/nrg1637. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 4.Heinemann M., Panke S. Synthetic biology-putting engineering into biology. Bioinformatics. 2006;22:2790–2799. doi: 10.1093/bioinformatics/btl469. [DOI] [PubMed] [Google Scholar]
- 5.Leonard E., Nielsen D., Solomon K., et al. Engineering microbes with synthetic biology frameworks. Trends Biotechnol. 2008;26:674–681. doi: 10.1016/j.tibtech.2008.08.003. [DOI] [PubMed] [Google Scholar]
- 6.Kitney R. I. Synthetic biology-Engineering biologically-based devices and systems. In: Jarm T., Kramar P., Zupanic A., editors. 11th Mediterranean Conference on Medical and Biological Engineering and Computing (MEDICON 2007), Jun 26–30, 2007. Ljubljana, Slovenia. Berlin: Springer-Verlag Berlin; 2007. pp. 1138–1139. [Google Scholar]
- 7.Khalil A. S., Collins J. J. Synthetic biology: Applications come of age. Nat Rev Genet. 2010;11:367–379. doi: 10.1038/nrg2775. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 8.Koonin E. V. How many genes can make a cell: The minimal-gene-set concept. Annu Rev Genomics Hum Genet. 2000;1:99–116. doi: 10.1146/annurev.genom.1.1.99. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9.Szathmáry E. Life: In search of the simplest cell. Nature. 2005;433:469–470. doi: 10.1038/433469a. [DOI] [PubMed] [Google Scholar]
- 10.Zhang L., Chang S., Wang J. How to make a minimal genome for synthetic minimal cell. Protein Cell. 2010;1:427–434. doi: 10.1007/s13238-010-0064-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 11.Gardner T. S., Cantor C. R., Collins J. J. Construction of a genetic toggle switch in Escherichia coli. Nature. 2000;403:339–342. doi: 10.1038/35002131. [DOI] [PubMed] [Google Scholar]
- 12.Elowitz M. B., Leibler S. A synthetic oscillatory network of transcriptional regulators. Nature. 2000;403:335–338. doi: 10.1038/35002125. [DOI] [PubMed] [Google Scholar]
- 13.Editorial. Ten years of synergy. Nature. 2010;463:269–270. doi: 10.1038/463269b. [DOI] [PubMed] [Google Scholar]
- 14.Purnick P. E. M., Weiss R. The second wave of synthetic biology: From modules to systems. Nat Rev Mol Cell Biol. 2009;10:410–422. doi: 10.1038/nrm2698. [DOI] [PubMed] [Google Scholar]
- 15.Yokobayashi Y., Weiss R., Arnold F. H. Directed evolution of a genetic circuit. Proc Natl Acad Sci USA. 2002;99:16587–16591. doi: 10.1073/pnas.252535999. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 16.Elowitz M. B., Levine A. J., Siggia E. D., et al. Stochastic gene expression in a single cell. Science. 2002;297:1183–1186. doi: 10.1126/science.1070919. [DOI] [PubMed] [Google Scholar]
- 17.Martin V. J., Pitera D. J., Withers S. T., et al. Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nat Biotechnol. 2003;21:796–802. doi: 10.1038/nbt833. [DOI] [PubMed] [Google Scholar]
- 18.You L., Cox R. S., Weiss R., et al. Programmed population control by cell-cell communication and regulated killing. Nature. 2004;428:868–871. doi: 10.1038/nature02491. [DOI] [PubMed] [Google Scholar]
- 19.Kramer B. P., Viretta A. U., El Baba M. D., et al. An engineered epigenetic transgene switch in mammalian cells. Nat Biotechnol. 2004;22:867–870. doi: 10.1038/nbt980. [DOI] [PubMed] [Google Scholar]
- 20.Basu S., Gerchman Y., Collins C. H., et al. A synthetic multicellular system for programmed pattern formation. Nature. 2005;434:1130–1134. doi: 10.1038/nature03461. [DOI] [PubMed] [Google Scholar]
- 21.Chen M. T., Weiss R. Artificial cell-cell communication in yeast Saccharomyces cerevisiae using signaling elements from Arabidopsis thaliana. Nat Biotechnol. 2005;23:1551–1555. doi: 10.1038/nbt1162. [DOI] [PubMed] [Google Scholar]
- 22.Ro D. K., Paradise E. M., Ouellet M., et al. Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature. 2006;440:940–943. doi: 10.1038/nature04640. [DOI] [PubMed] [Google Scholar]
- 23.Deans T. L., Cantor C. R., Collins J. J. A tunable genetic switch based on RNAi and repressor proteins for regulating gene expression in mammalian cells. Cell. 2007;130:363–372. doi: 10.1016/j.cell.2007.05.045. [DOI] [PubMed] [Google Scholar]
- 24.Rinaudo K., Bleris L., Maddamsetti R., et al. A universal RNAi-based logic evaluator that operates in mammalian cells. Nat Biotechnol. 2007;25:795–801. doi: 10.1038/nbt1307. [DOI] [PubMed] [Google Scholar]
- 25.Win M. N., Smolke C. D. A modular and extensible RNA-based gene-regulatory platform for engineering cellular function. Proc Natl Acad Sci USA. 2007;104:14283–14288. doi: 10.1073/pnas.0703961104. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 26.Lou C., Liu X., Ni M., et al. Synthesizing a novel genetic sequential logic circuit: a push-on push-off switch. Mol Syst Biol. 2010;6:350. doi: 10.1038/msb.2010.2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 27.Bronson J. E., Mazur W. W., Cornish V. W. Transcription factor logic using chemical complementation. Mol Biosyst. 2008;4:56–58. doi: 10.1039/b713852k. [DOI] [PubMed] [Google Scholar]
- 28.Zhang Y. H. P., Evans B. R., Mielenz J. R., et al. High-yield hydrogen production from starch and water by a synthetic enzymatic pathway. PLoS ONE. 2007;2:e456. doi: 10.1371/journal.pone.0000456. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 29.Steen E. J., Kang Y. S., Bokinsky G., et al. Microbial production of fatty-acid-derived fuels and chemicals from plant biomass. Nature. 2010;463:559–562. doi: 10.1038/nature08721. [DOI] [PubMed] [Google Scholar]
- 30.Fraser C. M., Gocayne J. D., White O., et al. The minimal gene complement of Mycoplasma genitalium. Science. 1995;270:397–403. doi: 10.1126/science.270.5235.397. [DOI] [PubMed] [Google Scholar]
- 31.Mushegian A. R., Koonin E. V. A minimal gene set for cellular life derived by comparison of complete bacterial genomes. Proc Natl Acad Sci USA. 1996;93:10268–10273. doi: 10.1073/pnas.93.19.10268. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 32.Koonin E. V. Comparative genomics, minimal gene-sets and the last universal common ancestor. Nat Rev. 2003;1:127–136. doi: 10.1038/nrmicro751. [DOI] [PubMed] [Google Scholar]
- 33.Akerley B. J., Rubin E. J., Novick V. L., et al. A genome-scale analysis for identification of genes required for growth or survival of Haemophilus influenzae. Proc Natl Acad Sci USA. 2002;99:966–971. doi: 10.1073/pnas.012602299. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 34.Glass J. I., Assad-Garcia N., Alperovich N., et al. Essential genes of a minimal bacterium. Proc Natl Acad Sci USA. 2006;103:425–430. doi: 10.1073/pnas.0510013103. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 35.Jacobs M. A., Alwood A., Thaipisuttikul I., et al. Comprehensive transposon mutant library of Pseudomonas aeruginosa. Proc Natl Acad Sci USA. 2003;100:14339–14344. doi: 10.1073/pnas.2036282100. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 36.Kobayashi K., Ehrlich S. D., Albertini A., et al. Essential Bacillus subtilis genes. Proc Natl Acad Sci USA. 2003;100:4678–4683. doi: 10.1073/pnas.0730515100. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 37.Liberati N. T., Urbach J. M., Miyata S., et al. An ordered, nonredundant library of Pseudomonas aeruginosa strain PA14 transposon insertion mutants. Proc Natl Acad Sci USA. 2006;103:2833–2838. doi: 10.1073/pnas.0511100103. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 38.Ji Y., Zhang B., Van S. F., et al. Identification of critical staphylococcal genes using conditional phenotypes generated by antisense RNA. Science. 2001;293:2266–2269. doi: 10.1126/science.1063566. [DOI] [PubMed] [Google Scholar]
- 39.Zhang Y., Thiele I., Weekes D., et al. Three-dimensional structural view of the central metabolic network of Thermotoga maritima. Science. 2009;325:1544–1549. doi: 10.1126/science.1174671. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 40.Fehér T., Papp B., Pál C., et al. Systematic genome reductions: Theoretical and experimental approaches. Chem Rev. 2007;107:3498–3513. doi: 10.1021/cr0683111. [DOI] [PubMed] [Google Scholar]
- 41.Baba T, Ara T, Hasegawa M, et al. Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: The Keio collection. Mol Syst Biol, 2006, 2, doi: 10.1038/msb4100050 [DOI] [PMC free article] [PubMed]
- 42.Sung B. H., Lee J. H., Kim S. C. Escherichia coli genome engineering and minimization for the construction of a bioengine. In: Lee S. Y., editor. Systems Biology and Biotechnology of Escherichia coli. Daejeon: Springer; 2009. pp. 19–40. [Google Scholar]
- 43.Goryshin I. Y., Naumann T. A., Apodaca J., et al. Chromosomal deletion formation system based on Tn5 double transposition: Use for making minimal genomes and essential gene analysis. Genome Res. 2003;13:644–653. doi: 10.1101/gr.611403. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 44.Yu B. J., Sung B. H., Koob M. D., et al. Minimization of the Escherichia coli genome using a Tn5-targeted Cre/loxP excision system. Nat Biotechnol. 2002;20:1018–1023. doi: 10.1038/nbt740. [DOI] [PubMed] [Google Scholar]
- 45.Kolisnychenko V., Plunkett G., 3rd, Herring C. D., et al. Engineering a reduced Escherichia coli genome. Genome Res. 2002;12:640–647. doi: 10.1101/gr.217202. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 46.Posfai G., Plunkett G., 3rd, Feher T., et al. Emergent properties of reduced-genome Escherichia coli. Science. 2006;312:1044–1046. doi: 10.1126/science.1126439. [DOI] [PubMed] [Google Scholar]
- 47.Mizoguchi H., Mori H., Fujio T. Escherichia coli minimum genome factory. Biotechnol Appl Biochem. 2007;46:157–167. doi: 10.1042/BA20060107. [DOI] [PubMed] [Google Scholar]
- 48.Hashimoto M., Ichimura T., Mizoguchi H., et al. Cell size and nucleoid organization of engineered Escherichia coli cells with a reduced genome. Mol Microbiol. 2005;55:137–149. doi: 10.1111/j.1365-2958.2004.04386.x. [DOI] [PubMed] [Google Scholar]
- 49.Westers H., Dorenbos R., van Dijl J. M., et al. Genome engineering reveals large dispensable regions in Bacillus subtilis. Mol Biol Evol. 2003;20:2076–2090. doi: 10.1093/molbev/msg219. [DOI] [PubMed] [Google Scholar]
- 50.Ara K., Ozaki K., Nakamura K., et al. Bacillus minimum genome factory: Effective utilization of microbial genome information. Biotechnol Appl Biochem. 2007;46:169–178. doi: 10.1042/BA20060111. [DOI] [PubMed] [Google Scholar]
- 51.Morimoto T., Kadoya R., Endo K., et al. Enhanced recombinant protein productivity by genome reduction in Bacillus subtilis. DNA Res. 2008;15:73–81. doi: 10.1093/dnares/dsn002. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 52.Suzuki N., Nonaka H., Tsuge Y., et al. Multiple large segment deletion method for Corynebacterium glutamicum. Appl Microbiol Biotechnol. 2005;69:151–161. doi: 10.1007/s00253-005-1976-4. [DOI] [PubMed] [Google Scholar]
- 53.Giga-Hama Y., Tohda H., Takegawa K., et al. Schizosaccharomyces pombe minimum genome factory. Biotechnol Appl Biochem. 2007;46:147–155. doi: 10.1042/BA20060106. [DOI] [PubMed] [Google Scholar]
- 54.Murakami K., Tao E., Ito Y., et al. Large scale deletions in the Saccharomyces cerevisiae genome create strains with altered regulation of carbon metabolism. Appl Microbiol Biotechnol. 2007;75:589–597. doi: 10.1007/s00253-007-0859-2. [DOI] [PubMed] [Google Scholar]
- 55.Agarwal K. L., Büchi H., Caruther M. H., et al. Total synthesis of gene for an alanine transfer ribonucleic acid from yeast. Nature. 1970;227:27–34. doi: 10.1038/227027a0. [DOI] [PubMed] [Google Scholar]
- 56.Cello J., Paul A. V., Wimmer E. Chemical synthesis of poliovirus cDNA: Generation of infections virus in the absence of natural template. Science. 2002;297:1016–1018. doi: 10.1126/science.1072266. [DOI] [PubMed] [Google Scholar]
- 57.Smith H. O., Hutchison C. A., Pfannkoch C., et al. Generating a synthetic genome by whole genome assembly: ΦX174 bacteriophage from synthetic oligonucleotides. Proc Natl Acad Sci USA. 2003;100:15440–15445. doi: 10.1073/pnas.2237126100. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 58.Kobasa D., Takada A., Shinya K., et al. Enhanced virulence of influenza A viruses with the haemagglutinin of the 1918 pandemic virus. Nature. 2004;431:703–707. doi: 10.1038/nature02951. [DOI] [PubMed] [Google Scholar]
- 59.Becker M. M., Graham R. L., Donaldson E. F., et al. Synthetic recombinant bat SARS-like coronavirus is infectious in cultured cells and in mice. Proc Natl Acad Sci USA. 2008;105:19944–19949. doi: 10.1073/pnas.0808116105. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 60.Foley P. L., Shuler M. L. Considerations for the design and construction of a synthetic platform cell for biotechnological applications. Biotechnol Bioeng. 2010;105:26–36. doi: 10.1002/bit.22575. [DOI] [PubMed] [Google Scholar]
- 61.Pennisi E. Synthetic genome brings new life to bacterium. Science. 2010;328:958–959. doi: 10.1126/science.328.5981.958. [DOI] [PubMed] [Google Scholar]
- 62.Hutchison C. A., Peterson S. N., Gill S. R., et al. Global transposon mutagenesis and a minimal mycoplasma genome. Science. 1999;286:2165–2169. doi: 10.1126/science.286.5447.2165. [DOI] [PubMed] [Google Scholar]
- 63.Lartigue C., Glass J. I., Alperovich N., et al. Genome transplantation in bacteria: Changing one species to another. Science. 2007;317:632–638. doi: 10.1126/science.1144622. [DOI] [PubMed] [Google Scholar]
- 64.Gibson D. G., Benders G. A., Andrews-Pfannkoch C., et al. Complete chemical synthesis, assembly, and cloning of a Mycoplasma genitalium genome. Science. 2008;319:1215–1220. doi: 10.1126/science.1151721. [DOI] [PubMed] [Google Scholar]
- 65.Gibson D. G., Benders G. A., Axelrod K. C., et al. One-step assembly in yeast of 25 overlapping DNA fragments to form a complete synthetic Mycoplasma genitalium genome. Proc Natl Acad Sci USA. 2008;105:20404–20409. doi: 10.1073/pnas.0811011106. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 66.Lartigue C., Vashee S., Algire M. A., et al. Creating bacterial strains from genomes that have been cloned and engineered in yeast. Science. 2009;325:1693–1696. doi: 10.1126/science.1173759. [DOI] [PubMed] [Google Scholar]
- 67.Zhang R., Lin Y. DEG 5.0, a database of essential genes in both prokaryotes and eukaryotes. Nucleic Acids Res. 2009;37:D455–D458. doi: 10.1093/nar/gkn858. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 68.Zhang R., Ou H., Zhang C. DEG: A database of essential genes. Nucleic Acids Res. 2004;32:D271–D272. doi: 10.1093/nar/gkh024. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 69.Hu B., Du J., Zou R.-Y., et al. An environment-sensitive synthetic microbial ecosystem. PLoS ONE. 2010;5:e10619. doi: 10.1371/journal.pone.0010619. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 70.Luo J., Wang J., Ma T. M., et al. Reverse engineering of bacterial chemotaxis pathway via frequency domain analysis. PLoS ONE. 2010;5:e9182. doi: 10.1371/journal.pone.0009182. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 71.Zhan J., Ding B., Ma R., et al. Develop reusable and combinable designs for transcriptional logic gates. Mol Syst Biol. 2010;6:388. doi: 10.1038/msb.2010.42. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 72.Kwok R. Five hard truths for synthetic biology. Nature. 2010;463:288–290. doi: 10.1038/463288a. [DOI] [PubMed] [Google Scholar]
- 73.Alterovitz G., Muso T., Ramoni M. F. The challenges of informatics in synthetic biology: From biomolecular networks to artificial organisms. Brief Bioinform. 2010;11:80–95. doi: 10.1093/bib/bbp054. [DOI] [PMC free article] [PubMed] [Google Scholar]
