Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 2013 Aug 24;56(10):1382–1391. doi: 10.1007/s11426-013-4967-9

Multiple biological functions and pharmacological effects of lycorine

ZhiFei Cao 1, Ping Yang 1, QuanSheng Zhou 1,
PMCID: PMC7088923  PMID: 32215001

Abstract

Lycorine is the major active component from the amaryllidaceae family plant Lycoris radiate, a represent traditional Chinese medicinal herb, and is one of the typical alkaloids with pyrrolophenanthridine nucleus core. Lycorine has drawn great interest in medicinal field due to its divergent chemical structures and multiple biological functions, as well as pharmacological effects on various diseases. Accumulated evidence shows that lycorine not only possesses strong pharmacological effects on many diseases, including anti-leukemia, anti-tumor, anti-angiogenesis, anti-virus, anti-bacteria, anti-inflammation, and antimalaria, but also exerts many other biological functions, such as inhibition of acetylcholinesterase and topoisomerase, suppression of ascorbic acid biosynthesis, and control of circadian period length. Notably, lycorine exhibits its numerous pharmacological effects on various diseases with very low toxicity and mild side effects. The divergent chemical structures, multiple biological functions, and very low toxicity of lycorine imply that the agent is a potential drug candidate that warrants for further preclinical and clinic investigation.

Keywords: traditional Chinese medicinal herbs, lycorine, anti-cancer, anti-virus, angiogenesis, neovascularization

Footnotes

These authors contributed equally to this work.

References

  • 1.Wang L, Zhou GB, Liu P, Song JH, Liang Y, Yan XJ, Xu F, Wang BS, Mao JH, Shen ZX, Chen SJ, Chen Z. Dissection of mechanisms of Chinese medicinal formula Realgar-Indigo naturalis as an effective treatment for promyelocytic leukemia. Proc Natl Acad Sci U S A. 2008;105(12):4826–4831. doi: 10.1073/pnas.0712365105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Zhang XW, Yan XJ, Zhou ZR, Yang FF, Wu ZY, Sun HB, Liang WX, Song AX, Lallemand-Breitenbach V, Jeanne M, Zhang QY, Yang HY, Huang QH, Zhou GB, Tong JH, Zhang Y, Wu JH, Hu HY, de The H, Chen SJ, Chen Z. Arsenic trioxide controls the fate of the PML-RARalpha oncoprotein by directly binding PML. Science. 2010;328(5975):240–243. doi: 10.1126/science.1183424. [DOI] [PubMed] [Google Scholar]
  • 3.Chen J, Wang A, Huo HH, Huang PQ. Progress on the total synthesis of natural products in China: From 2006 to 2010. Sci China Chem. 2012;55(7):1175–1212. [Google Scholar]
  • 4.Lamoral-Theys D, Decaestecker C, Mathieu V, Dubois J, Kornienko A, Kiss R, Evidente A, Pottier L. Lycorine and its derivatives for anticancer drug design. Mini Rev Med Chem. 2010;10(1):41–50. doi: 10.2174/138955710791112604. [DOI] [PubMed] [Google Scholar]
  • 5.Elgorashi EE, Drewes SE, Van Staden J. Organ-to-organ and seasonal variation in alkaloids from Crinum macowanii. Fitoterapia. 2002;73(6):490–495. doi: 10.1016/s0367-326x(02)00164-8. [DOI] [PubMed] [Google Scholar]
  • 6.Cedron JC, Gutierrez D, Flores N, Ravelo AG, Estevez-Braun A. Synthesis and antiplasmodial activity of lycorine derivatives. Bioorg Med Chem. 2010;18(13):4694–4701. doi: 10.1016/j.bmc.2010.05.023. [DOI] [PubMed] [Google Scholar]
  • 7.Van Goietsenoven G, Andolfi A, Lallemand B, Cimmino A, Lamoral-Theys D, Gras T, Abou-Donia A, Dubois J, Lefranc F, Mathieu V, Kornienko A, Kiss R, Evidente A. Amaryllidaceae alkaloids belonging to different structural subgroups display activity against apoptosis-resistant cancer cells. J Nat Prod. 2010;73(7):1223–1227. doi: 10.1021/np9008255. [DOI] [PubMed] [Google Scholar]
  • 8.Liu XS, Jiang J, Jiao XY, Wu YE, Lin JH, Cai YM. Lycorine induces apoptosis and down-regulation of Mcl-1 in human leukemia cells. Cancer Lett. 2009;274(1):16–24. doi: 10.1016/j.canlet.2008.08.029. [DOI] [PubMed] [Google Scholar]
  • 9.Lamoral-Theys D, Andolfi A, Van Goietsenoven G, Cimmino A, Le CB, Wauthoz N, Megalizzi V, Gras T, Bruyere C, Dubois J, Mathieu V, Kornienko A, Kiss R, Evidente A. Lycorine, the main phenanthridine Amaryllidaceae alkaloid, exhibits significant antitumor activity in cancer cells that display resistance to proapoptotic stimuli: an investigation of structure-activity relationship and mechanistic insight. J Med Chem. 2009;52(20):6244–6256. doi: 10.1021/jm901031h. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.McNulty J, Nair JJ, Bastida J, Pandey S, Griffin C. Structure-activity studies on the lycorine pharmacophore: A potent inducer of apoptosis in human leukemia cells. Phytochemistry. 2009;70(7):913–919. doi: 10.1016/j.phytochem.2009.04.012. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Liu R, Cao Z, Tu J, Pan Y, Shang B, Zhang G, Bao M, Zhang S, Yang P, Zhou Q. Lycorine hydrochloride inhibits metastatic melanoma cell-dominant vasculogenic mimicry. Pigment Cell Melanoma Res. 2012;25(5):630–638. doi: 10.1111/j.1755-148X.2012.01036.x. [DOI] [PubMed] [Google Scholar]
  • 12.Cao Z, Yu D, Fu S, Zhang G, Pan Y, Bao M, Tu J, Shang B, Guo P, Yang P, Zhou Q. Lycorine hydrochloride selectively inhibits human ovarian cancer cell proliferation and tumor neovascularization with very low toxicity. Toxicol Lett. 2013;218(2):174–185. doi: 10.1016/j.toxlet.2013.01.018. [DOI] [PubMed] [Google Scholar]
  • 13.Szlavik L, Gyuris A, Minarovits J, Forgo P, Molnar J, Hohmann J. Alkaloids from Leucojum vernum and antiretroviral activity of Amaryllidaceae alkaloids. Planta Med. 2004;70(9):871–873. doi: 10.1055/s-2004-827239. [DOI] [PubMed] [Google Scholar]
  • 14.Li SY, Chen C, Zhang HQ, Guo HY, Wang H, Wang L, Zhang X, Hua SN, Yu J, Xiao PG, Li RS, Tan X. Identification of natural compounds with antiviral activities against SARS-associated coronavirus. Antiviral Res. 2005;67(1):18–23. doi: 10.1016/j.antiviral.2005.02.007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Hwang YC, Chu JJ, Yang PL, Chen W, Yates MV. Rapid identification of inhibitors that interfere with poliovirus replication using a cell-based assay. Antiviral Res. 2008;77(3):232–236. doi: 10.1016/j.antiviral.2007.12.009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Zou G, Puig-Basagoiti F, Zhang B, Qing M, Chen L, Pankiewicz KW, Felczak K, Yuan Z, Shi PY. A single-amino acid substitution in West Nile virus 2K peptide between NS4A and NS4B confers resistance to lycorine, a flavivirus inhibitor. Virology. 2009;384(1):242–252. doi: 10.1016/j.virol.2008.11.003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Liu J, Yang Y, Xu Y, Ma C, Qin C, Zhang L. Lycorine reduces mortality of human enterovirus 71-infected mice by inhibiting virus replication. Virol J. 2011;8:483. doi: 10.1186/1743-422X-8-483. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.He J, Qi WB, Wang L, Tian J, Jiao PR, Liu GQ, Ye WC, Liao M. Influenza Other Respi Viruses. 2012. Amaryllidaceae alkaloids inhibit nuclear-to-cytoplasmic export of ribonucleoprotein (RNP) complex of highly pathogenic avian influenza virus H5N1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Massardo DR, Manna F, Schafer B, Wolf K, Del GL. Complete absence of mitochondrial DNA in the petite-negative yeast Schizosaccharomyces pombe leads to resistance towards the alkaloid lycorine. Curr Genet. 1994;25(1):80–83. doi: 10.1007/BF00712972. [DOI] [PubMed] [Google Scholar]
  • 20.Del GA, Massardo DR, Manna F, Koltovaya N, Hartings H, Del GL, Wolf K. Correlation of resistance to the alkaloid lycorine with the degree of suppressiveness in petite mutants of Saccharomyces cerevisiae. Curr Microbiol. 1997;34(6):382–384. doi: 10.1007/s002849900200. [DOI] [PubMed] [Google Scholar]
  • 21.Del GL, Massardo DR, Pontieri P, Wolf K. Interaction between yeast mitochondrial and nuclear genomes: Null alleles of RTG genes affect resistance to the alkaloid lycorine in rho0 petites of Saccharomyces cerevisiae. Gene. 2005;354:9–14. doi: 10.1016/j.gene.2005.03.020. [DOI] [PubMed] [Google Scholar]
  • 22.Ch’en MC, Jin SC, Wang YC. Effect of lycorine on the pituitary-adrenal system. Yao Xue Xue Bao. 1965;12(12):767–771. [PubMed] [Google Scholar]
  • 23.Yamazaki Y, Kawano Y. Inhibitory effects of herbal alkaloids on the tumor necrosis factor-alpha and nitric oxide production in lipopolysaccharide-stimulated RAW264 macrophages. Chem Pharm Bull (Tokyo) 2011;59(3):388–3891. doi: 10.1248/cpb.59.388. [DOI] [PubMed] [Google Scholar]
  • 24.Citoglu GS, Acikara OB, Yilmaz BS, Ozbek H. Evaluation of analgesic, anti-inflammatory and hepatoprotective effects of lycorine from Sternbergia fisheriana (Herbert) Rupr. Fitoterapia. 2012;83(1):81–87. doi: 10.1016/j.fitote.2011.09.008. [DOI] [PubMed] [Google Scholar]
  • 25.Kang J, Zhang Y, Cao X, Fan J, Li G, Wang Q, Diao Y, Zhao Z, Luo L, Yin Z. Lycorine inhibits lipopolysaccharide-induced iNOS and COX-2 up-regulation in RAW264.7 cells through suppressing P38 and STATs activation and increases the survival rate of mice after LPS challenge. Int Immunopharmacol. 2012;12(1):249–256. doi: 10.1016/j.intimp.2011.11.018. [DOI] [PubMed] [Google Scholar]
  • 26.Elgorashi EE, Stafford GI, Van Staden J. Acetylcholinesterase enzyme inhibitory effects of amaryllidaceae alkaloids. Planta Med. 2004;70(3):260–262. doi: 10.1055/s-2004-818919. [DOI] [PubMed] [Google Scholar]
  • 27.Nair JJ, van Staden J. Acetylcholinesterase inhibition within the lycorine series of Amaryllidaceae alkaloids. Nat Prod Commun. 2012;7(7):959–962. [PubMed] [Google Scholar]
  • 28.Nino J, Hincapie GM, Correa YM, Mosquera OM. Alkaloids of Crinum x powellii “Album” (Amaryllidaceae) and their topoisomerase inhibitory activity. Z Naturforsch C. 2007;62(3–4):223–226. doi: 10.1515/znc-2007-3-411. [DOI] [PubMed] [Google Scholar]
  • 29.McNulty J, Nair JJ, Singh M, Crankshaw DJ, Holloway AC, Bastida J. Cytochrome P450 3A4 inhibitory activity studies within the lycorine series of alkaloids. Nat Prod Commun. 2010;5(8):1195–1200. [PubMed] [Google Scholar]
  • 30.Kushida N, Atsumi S, Koyano T, Umezawa K. Induction of flat morphology in K-ras-transformed fibroblasts by lycorine, an alkaloid isolated from the tropical plant Eucharis grandiflora. Drugs Exp Clin Res. 1997;23(5–6):151–155. [PubMed] [Google Scholar]
  • 31.Baez A, Vazquez D. Binding of [3H]narciclasine to eukaryotic ribosomes. A study on a structure-activity relationship. Biochim Biophys Acta. 1978;518(1):95–103. doi: 10.1016/0005-2787(78)90119-3. [DOI] [PubMed] [Google Scholar]
  • 32.Arrigoni O, Arrigoni-Liso R, Calabrese G. Ascorbic Acid as a factor controlling the development of cyanide-insensitive respiration. Science. 1976;194(4262):332–333. doi: 10.1126/science.194.4262.332. [DOI] [PubMed] [Google Scholar]
  • 33.Imai T, Karita S, Shiratori G, Hattori M, Nunome T, Oba K, Hirai M. L-galactono-gamma-lactone dehydrogenase from sweet potato: Purification and cDNA sequence analysis. Plant Cell Physiol. 1998;39(12):1350–1358. doi: 10.1093/oxfordjournals.pcp.a029341. [DOI] [PubMed] [Google Scholar]
  • 34.Mellado M, Contreras RA, Gonzalez A, Dennett G, Moenne A. Copper-induced synthesis of ascorbate, glutathione and phytochelatins in the marine alga Ulva compressa (Chlorophyta) Plant Physiol Biochem. 2012;51:102–108. doi: 10.1016/j.plaphy.2011.10.007. [DOI] [PubMed] [Google Scholar]
  • 35.Ye N, Zhu G, Liu Y, Zhang A, Li Y, Liu R, Shi L, Jia L, Zhang J. Ascorbic acid and reactive oxygen species are involved in the inhibition of seed germination by abscisic acid in rice seeds. J Exp Bot. 2012;63(5):1809–1822. doi: 10.1093/jxb/err336. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Schrader KK, Andolfi A, Cantrell CL, Cimmino A, Duke SO, Osbrink W, Wedge DE, Evidente A. A survey of phytotoxic microbial and plant metabolites as potential natural products for pest management. Chem Biodivers. 2010;7(9):2261–2280. doi: 10.1002/cbdv.201000041. [DOI] [PubMed] [Google Scholar]
  • 37.Giordani RB, Weizenmann M, Rosemberg DB, De Carli GA, Bogo MR, Zuanazzi JA, Tasca T. Trichomonas vaginalis nucleoside triphosphate diphosphohydrolase and ecto-5′-nucleotidase activities are inhibited by lycorine and candimine. Parasitol Int. 2010;59(2):226–231. doi: 10.1016/j.parint.2010.02.004. [DOI] [PubMed] [Google Scholar]
  • 38.Giordani RB, Vieira PB, Weizenmann M, Rosemberg DB, Souza AP, Bonorino C, De Carli GA, Bogo MR, Zuanazzi JA, Tasca T. Lycorine induces cell death in the amitochondriate parasite, Trichomonas vaginalis, via an alternative non-apoptotic death pathway. Phytochemistry. 2011;72(7):645–650. doi: 10.1016/j.phytochem.2011.01.023. [DOI] [PubMed] [Google Scholar]
  • 39.Abbassy MA, el-Gougary OA, el-Hamady S, Sholo MA. Insecticidal, acaricidal and synergistic effects of soosan, Pancratium maritimum extracts and constituents. J Egypt Soc Parasitol. 1998;28(1):197–205. [PubMed] [Google Scholar]
  • 40.Onishi Y, Kawano Y, Yamazaki Y. Lycorine, a candidate for the control of period length in mammalian cells. Cell Physiol Biochem. 2012;29(3–4):407–416. doi: 10.1159/000338495. [DOI] [PubMed] [Google Scholar]
  • 41.Ch’en MC, Li CH. Some pharmacological actions of lycorine. Yao Xue Xue Bao. 1965;12(9):594–600. [PubMed] [Google Scholar]
  • 42.Wu ZP, Chen Y, Xia B, Wang M, Dong YF, Feng X. Two novel ceramides with a phytosphingolipid and a tertiary amide structure from Zephyranthes candida. Lipids. 2009;44(1):63–70. doi: 10.1007/s11745-008-3246-6. [DOI] [PubMed] [Google Scholar]
  • 43.Nair JJ, Aremu AO, van Staden J. Isolation of narciprimine from Cyrtanthus contractus (Amaryllidaceae) and evaluation of its acetylcholinesterase inhibitory activity. J Ethnopharmacol. 2011;137(3):1102–1106. doi: 10.1016/j.jep.2011.07.028. [DOI] [PubMed] [Google Scholar]
  • 44.Reyes-Chilpa R, Berkov S, Hernandez-Ortega S, Jankowski CK, Arseneau S, Clotet-Codina I, Este JA, Codina C, Viladomat F, Bastida J. Acetylcholinesterase-inhibiting alkaloids from Zephyranthes concolor. Molecules. 2011;16(11):9520–9533. doi: 10.3390/molecules16119520. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 45.Salehi SMH, Azadi B, Amin G, Amini M, Sharifzadeh M. The first phytochemical report of Galanthus transcaucasicus Fomin. Daru. 2010;18(2):124–127. [PMC free article] [PubMed] [Google Scholar]
  • 46.Katoch D, Kumar S, Kumar N, Singh B. Simultaneous quantification of Amaryllidaceae alkaloids from Zephyranthes grandiflora by UPLC-DAD/ESI-MS/MS. J Pharm Biomed Anal. 2012;71:187–192. doi: 10.1016/j.jpba.2012.08.001. [DOI] [PubMed] [Google Scholar]
  • 47.Georgieva L, Berkov S, Kondakova V, Bastida J, Viladomat F, Atanassov A, Codina C. Alkaloid variability in Leucojum aestivum from wild populations. Z Naturforsch C. 2007;62(9–10):627–635. doi: 10.1515/znc-2007-9-1002. [DOI] [PubMed] [Google Scholar]
  • 48.Mu HM, Wang R, Li XD, Jiang YM, Peng F, Xia B. Alkaloid accumulation in different parts and ages of Lycoris chinensis. Z Naturforsch C. 2010;65(7–8):458–462. doi: 10.1515/znc-2010-7-807. [DOI] [PubMed] [Google Scholar]
  • 49.Ptak A, El TA, Dupire F, Boisbrun M, Henry M, Chapleur Y, Mos M, Laurain-Mattar D. LCMS and GCMS for the screening of alkaloids in natural and in vitro extracts of Leucojum aestivum. J Nat Prod. 2009;72(1):142–147. doi: 10.1021/np800585c. [DOI] [PubMed] [Google Scholar]
  • 50.Kaya GI, Cicek D, Sarikaya B, Onur MA, Somer NU. HPLC — DAD analysis of lycorine in Amaryllidaceae species. Nat Prod Commun. 2010;5(6):873–876. [PubMed] [Google Scholar]
  • 51.Yamada K, Yamashita M, Sumiyoshi T, Nishimura K, Tomioka K. Total synthesis of (-)-lycorine and (-)-2-epi-lycorine by asymmetric conjugate addition cascade. Org Lett. 2009;11(7):1631–1633. doi: 10.1021/ol9003564. [DOI] [PubMed] [Google Scholar]
  • 52.Jones MT, Schwartz BD, Willis AC, Banwell MG. Rapid and enantioselective assembly of the lycorine framework using chemoenzymatic techniques. Org Lett. 2009;11(15):3506–3509. doi: 10.1021/ol901364n. [DOI] [PubMed] [Google Scholar]
  • 53.John R, Mohamed SK, Mahmoud AR, Ahmed AA. Crinum, an endless source of bioactive principles: A review. Part I. Crinum alkaloids: Lycorine-type alkaloids. IJPSR. 2012;3(7):1883–1890. [Google Scholar]
  • 54.Jimenez A, Santos A, Alonso G, Vazquez D. Inhibitors of protein synthesis in eukarytic cells. Comparative effects of some amaryllidaceae alkaloids. Biochim Biophys Acta. 1976;425(3):342–348. doi: 10.1016/0005-2787(76)90261-6. [DOI] [PubMed] [Google Scholar]
  • 55.Liu J, Hu WX, He LF, Ye M, Li Y. Effects of lycorine on HL-60 cells via arresting cell cycle and inducing apoptosis. FEBS Lett. 2004;578(3):245–250. doi: 10.1016/j.febslet.2004.10.095. [DOI] [PubMed] [Google Scholar]
  • 56.Evidente A, Kireev AS, Jenkins AR, Romero AE, Steelant WF, Van Slambrouck S, Kornienko A. Biological evaluation of structurally diverse amaryllidaceae alkaloids and their synthetic derivatives: Discovery of novel leads for anticancer drug design. Planta Med. 2009;75(5):501–507. doi: 10.1055/s-0029-1185340. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 57.Li Y, Liu J, Tang LJ, Shi YW, Ren W, Hu WX. Apoptosis induced by lycorine in KM3 cells is associated with the G0/G1 cell cycle arrest. Oncol Rep. 2007;17(2):377–384. [PubMed] [Google Scholar]
  • 58.Li L, Dai HJ, Ye M, Wang SL, Xiao XJ, Zheng J, Chen HY, Luo YH, Liu J. Lycorine induces cell-cycle arrest in the G0/G1 phase in K562 cells via HDAC inhibition. Cancer Cell Int. 2012;12(1):49. doi: 10.1186/1475-2867-12-49. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 59.Min BS, Gao JJ, Nakamura N, Kim YH, Hattori M. Cytotoxic alkaloids and a flavan from the bulbs of Crinum asiaticum var. japonicum. Chem Pharm Bull (Tokyo) 2001;49(9):1217–1219. doi: 10.1248/cpb.49.1217. [DOI] [PubMed] [Google Scholar]
  • 60.Liu J, Li Y, Tang LJ, Zhang GP, Hu WX. Treatment of lycorine on SCID mice model with human APL cells. Biomed Pharmacother. 2007;61(4):229–234. doi: 10.1016/j.biopha.2007.01.003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 61.Liu J, Hu JL, Shi BW, He Y, Hu WX. Up-regulation of p21 and TNF-alpha is mediated in lycorine-induced death of HL-60 cells. Cancer Cell Int. 2010;10:25. doi: 10.1186/1475-2867-10-25. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 62.Hayden RE, Pratt G, Drayson MT, Bunce CM. Lycorine sensitizes CD40 ligand-protected chronic lymphocytic leukemia cells to bezafibrate- and medroxyprogesterone acetate-induced apoptosis but dasatanib does not overcome reported CD40-mediated drug resistance. Haematologica. 2010;95(11):1889–1896. doi: 10.3324/haematol.2010.027821. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 63.Gimbrone MA, Jr, Leapman SB, Cotran RS, Folkman J. Tumor dormancy in vivo by prevention of neovascularization. J Exp Med. 1972;136(2):261–276. doi: 10.1084/jem.136.2.261. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 64.Cold Spring Harb Perspect Med. 2012. [DOI] [PMC free article] [PubMed]
  • 65.Al-Husein B, Abdalla M, Trepte M, Deremer DL, Somanath PR. Antiangiogenic therapy for cancer: An update. Pharmacotherapy. 2012;32(12):1095–1111. doi: 10.1002/phar.1147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 66.Braghiroli MI, Sabbaga J, Hoff PM. Bevacizumab: Overview of the literature. Expert Rev Anticancer Ther. 2012;12(5):567–580. doi: 10.1586/era.12.13. [DOI] [PubMed] [Google Scholar]
  • 67.Sitohy B, Nagy JA, Dvorak HF. Anti-VEGF/VEGFR therapy for cancer: Reassessing the target. Cancer Res. 2012;72(8):1909–1914. doi: 10.1158/0008-5472.CAN-11-3406. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 68.Wu JM, Staton CA. Anti-angiogenic drug discovery: Lessons from the past and thoughts for the future. Expert Opin Drug Discov. 2012;7(8):723–743. doi: 10.1517/17460441.2012.695774. [DOI] [PubMed] [Google Scholar]
  • 69.Giuliano S, Pages G. Mechanisms of resistance to anti-angiogenesis therapies. Biochimie. 2013;95(6):1110–1119. doi: 10.1016/j.biochi.2013.03.002. [DOI] [PubMed] [Google Scholar]
  • 70.Hida K, Akiyama K, Ohga N, Maishi N, Hida Y. Tumour endothelial cells acquire drug resistance in a tumour microenvironment. J Biol chem. 2013;153(3):243–249. doi: 10.1093/jb/mvs152. [DOI] [PubMed] [Google Scholar]
  • 71.Chen CT, Hung MC. Beyond anti-VEGF: Dual-targeting antiangiogenic and antiproliferative therapy. Am J Transl Res. 2013;5(4):393–403. [PMC free article] [PubMed] [Google Scholar]
  • 72.Liu R, Yang K, Meng C, Zhang Z, Xu Y. Vasculogenic mimicry is a marker of poor prognosis in prostate cancer. Cancer Biol Ther. 2012;13(7):527–533. doi: 10.4161/cbt.19602. [DOI] [PubMed] [Google Scholar]
  • 73.Albini A, Tosetti F, Li VW, Noonan DM, Li WW. Cancer prevention by targeting angiogenesis. Nat Rev Clin Oncol. 2012;9(9):498–509. doi: 10.1038/nrclinonc.2012.120. [DOI] [PubMed] [Google Scholar]
  • 74.Shang B, Cao Z, Zhou Q. Progress in tumor vascular normalization for anticancer therapy: challenges and perspectives. Front Med. 2012;6(1):67–78. doi: 10.1007/s11684-012-0176-8. [DOI] [PubMed] [Google Scholar]
  • 75.Carmeliet P, Jain RK. Molecular mechanisms and clinical applications of angiogenesis. Nature. 2011;473(7347):298–307. doi: 10.1038/nature10144. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 76.Cao Z, Bao M, Miele L, Sarkar FH, Wang Z, Zhou Q. Eur J Cancer. 2013. Tumor vasculogenic mimicry is associated with poor prognosis of human cancer patients: A systemic review and meta-analysis. [DOI] [PubMed] [Google Scholar]
  • 77.Bao M, Cao Z, Yu D, Fu S, Zhang G, Yang P, Pan Y, Yang B, Han H, Zhou Q. Columbamine suppresses the proliferation and neovascularization of metastatic osteosarcoma U2OS cells with low cytotoxicity. Toxicol Lett. 2012;215(3):174–180. doi: 10.1016/j.toxlet.2012.10.015. [DOI] [PubMed] [Google Scholar]
  • 78.Liu R, Cao Z, Pan Y, Zhang G, Yang P, Guo P, Zhou Q. Jatrorrhizine hydrochloride inhibits the proliferation and neovascularization of C8161 metastatic melanoma cells. Anticancer Drugs. 2013;24(7):667–676. doi: 10.1097/CAD.0b013e328361ab28. [DOI] [PubMed] [Google Scholar]
  • 79.Vrijsen R, Vanden BDA, Vlietinck AJ, Boeye A. Lycorine: a eukaryotic termination inhibitor. J Biol Chem. 1986;261(2):505–507. [PubMed] [Google Scholar]
  • 80.Schrader KK, Avolio F, Andolfi A, Cimmino A, Evidente A. Ungeremine and its hemisynthesized analogues as bactericides against flavobacterium columnare. J Agric Food Chem. 2013;61(6):1179–1183. doi: 10.1021/jf304586j. [DOI] [PubMed] [Google Scholar]
  • 81.Mikami M, Kitahara M, Kitano M, Ariki Y, Mimaki Y, Sashida Y, Yamazaki M, Yui S. Suppressive activity of lycoricidinol (narciclasine) against cytotoxicity of neutrophil-derived calprotectin, and its suppressive effect on rat adjuvant arthritis model. Biol Pharm Bull. 1999;22(7):674–678. doi: 10.1248/bpb.22.674. [DOI] [PubMed] [Google Scholar]
  • 82.McNulty J, Nair JJ, Little JR, Brennan JD, Bastida J. Structure-activity studies on acetylcholinesterase inhibition in the lycorine series of Amaryllidaceae alkaloids. Bioorg Med Chem Lett. 2010;20(17):5290–5294. doi: 10.1016/j.bmcl.2010.06.130. [DOI] [PubMed] [Google Scholar]
  • 83.Cortese I, Renna G, Siro-Brigiani G, Poli G, Cagiano R. Pharmacology of lycorine. 1. Effect on biliary secretion in the rat. Boll Soc Ital Biol Sper. 1983;59(9):1261–1264. [PubMed] [Google Scholar]
  • 84.Kretzing S, Abraham G, Seiwert B, Ungemach FR, Krugel U, Regenthal R. Dose-dependent emetic effects of the Amaryllidaceous alkaloid lycorine in beagle dogs. Toxicon. 2011;57(1):117–124. doi: 10.1016/j.toxicon.2010.10.012. [DOI] [PubMed] [Google Scholar]
  • 85.Kretzing S, Abraham G, Seiwert B, Ungemach FR, Krugel U, Regenthal R. Dose-dependent emetic effects of the Amaryllidaceous alkaloid lycorine in beagle dogs. Toxicon. 2011;57(1):117–124. doi: 10.1016/j.toxicon.2010.10.012. [DOI] [PubMed] [Google Scholar]
  • 86.Kretzing S, Abraham G, Seiwert B, Ungemach FR, Krugel U, Teichert J, Regenthal R. In vivo assessment of antiemetic drugs and mechanism of lycorine-induced nausea and emesis. Arch Toxicol. 2011;85(12):1565–1573. doi: 10.1007/s00204-011-0719-9. [DOI] [PubMed] [Google Scholar]

Articles from Science China. Chemistry are provided here courtesy of Nature Publishing Group

RESOURCES