Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 2017 Dec 14;51(6):782–787. doi: 10.1134/S0026893317060103

Next-Generation Techniques for Discovering Human Monoclonal Antibodies

A A Lushova 1, M G Biazrova 1, A G Prilipov 2, G K Sadykova 2, T A Kopylov 3, A V Filatov 1,
PMCID: PMC7088925  PMID: 32214477

Abstract

Monoclonal antibodies have found wide applications in the treatment of cancer, as well as of autoimmune, infectious, and other diseases. Several dozen new antibodies are currently undergoing different stages of clinical trials, and some of them will soon be added to the list of immunotherapeutic drugs. Most of these antibodies have been generated using hybridoma technology or a phage display. In recent years, new methods of obtaining human monoclonal antibodies have been actively developing. These methods rely on sequencing immunoglobulin genes from B lymphocytes, as well as on the creation of antibody-secreting stable B-cell lines. The term next-generation antibody-discovery platforms has already been established in the literature to refer to these approaches. Our review focuses on describing the results obtained by these methods.

Keywords: human monoclonal antibodies, next-generation sequencing, B-cell immortalization, immunoglobulins

Abbreviations

ELISpot

enzyme-linked immunospot

NGS

next-generation sequencing

VH

variable domain of the heavy chain

VL

variable domain of the light chain

mAb

monoclonal antibody

SARS

severe acute respiratory syndrome.

Footnotes

Original Russian Text © A.A. Lushova, M.G. Biazrova, A.G. Prilipov, G.K. Sadykova, T.A. Kopylov, A.V. Filatov, 2017, published in Molekulyarnaya Biologiya, 2017, Vol. 51, No. 6, pp. 899–906.

References

  • 1.Köhler G., Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature. 1975;256:495–497. doi: 10.1038/256495a0. [DOI] [PubMed] [Google Scholar]
  • 2.Green L.L. Antibody engineering via genetic engineering of the mouse: XenoMouse strains are a vehicle for the facile generation of therapeutic human monoclonal antibodies. J. Immunol. Methods. 1999;231:11–23. doi: 10.1016/S0022-1759(99)00137-4. [DOI] [PubMed] [Google Scholar]
  • 3.Frenzel A., Schirrmann T., Hust M. Phage display-derived human antibodies in clinical development and therapy. MAbs. 2016;8:1177–11194. doi: 10.1080/19420862.2016.1212149. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Chiu H.Y., Wang T.S., Chan C.C., et al. Risk factor analysis for the immunogenicity of adalimumab associated with decreased clinical response in Chinese patients with psoriasis. Acta Dermatol. Venereol. 2015;95:711–716. doi: 10.2340/00015555-2069. [DOI] [PubMed] [Google Scholar]
  • 5.van Schouwenburg P.A., Rispens T., Wolbink G.J. Immunogenicity of anti-TNF biologic therapies for rheumatoid arthritis. Nat. Rev. Rheumatol. 2013;9:164–172. doi: 10.1038/nrrheum.2013.4. [DOI] [PubMed] [Google Scholar]
  • 6.Hardiman G. Next-generation antibody discovery platforms. Proc. Natl. Acad. Sci. U. S. A. 2012;109:18245–18246. doi: 10.1073/pnas.1216406109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Lavinder J.J., Horton A.P., Georgiou G., et al. Next-generation sequencing and protein mass spectrometry for the comprehensive analysis of human cellular and serum antibody repertoires. Curr. Opin. Chem. Biol. 2015;24:112–120. doi: 10.1016/j.cbpa.2014.11.007. [DOI] [PubMed] [Google Scholar]
  • 8.Galson J.D., Pollard A.J., Truck J., et al. Studying the antibody repertoire after vaccination: Practical applications. Trends Immunol. 2014;35:319–331. doi: 10.1016/j.it.2014.04.005. [DOI] [PubMed] [Google Scholar]
  • 9.Reddy S.T., Ge X., Miklos A.E., et al. Monoclonal antibodies isolated without screening by analyzing the variable-gene repertoire of plasma cells. Nat. Biotechnol. 2010;28:965–969. doi: 10.1038/nbt.1673. [DOI] [PubMed] [Google Scholar]
  • 10.Lees W.D., Shepherd A.J. Utilities for highthroughput analysis of B-cell clonal lneages. J. Immunol. Res. 2015;2015:323–506. doi: 10.1155/2015/323506. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Lebedin M.Y., Turchaninova M.A., Egorov E.S., et al. High-throughput immunoglobulin sequencing data analysis with the use of unique molecular identifiers. Immunologiya. 2017;38:59–63. [Google Scholar]
  • 12.Turchaninova M.A., Davydov A., Britanova O.V., et al. High-quality full-length immunoglobulin profiling with unique molecular barcoding. Nat. Protoc. 2016;11:1599–1616. doi: 10.1038/nprot.2016.093. [DOI] [PubMed] [Google Scholar]
  • 13.Lu D.R., Tan Y.C., Kongpachith S., et al. Identifying functional anti-Staphylococcus aureus antibodies by sequencing antibody repertoires of patient plasmablasts. Clin. Immunol. 2014;152:77–89. doi: 10.1016/j.clim.2014.02.010. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Wu X., Zhou T., Zhu J., Zhang B., et al. Focused evolution of HIV-1 neutralizing antibodies revealed by structures and deep sequencing. Science. 2011;333:1593–1602. doi: 10.1126/science.1207532. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Wardemann H., Yurasov S., Schaefer A., et al. Predominant autoantibody production by early human B cell precursors. Science. 2003;301:1374–1377. doi: 10.1126/science.1086907. [DOI] [PubMed] [Google Scholar]
  • 16.Clargo A.M., Hudson A.R., Ndlovu W., et al. The rapid generation of recombinant functional monoclonal antibodies from individual, antigen-specific bone marrow-derived plasma cells isolated using a novel fluorescence-based method. MAbs. 2014;6:143–159. doi: 10.4161/mabs.27044. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Corti D., Voss J., Gamblin S.J., Codoni G., et al. A neutralizing antibody selected from plasma cells that binds to group 1 and group 2 influenza A hemagglutinins. Science. 2011;333:850–856. doi: 10.1126/science.1205669. [DOI] [PubMed] [Google Scholar]
  • 18.Yu X., Tsibane T., McGraw P.A., House F.S., et al. Neutralizing antibodies derived from the B cells of 1918 influenza pandemic survivors. Nature. 2008;455:532–536. doi: 10.1038/nature07231. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Traggiai E., Becker S., Subbarao K., Kolesnikova L., et al. An efficient method to make human monoclonal antibodies from memory B cells: Potent neutralization of SARS coronavirus. Nat. Med. 2004;10:871–875. doi: 10.1038/nm1080. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Scheid J.F., Mouquet H., Feldhahn N., et al. Broad diversity of neutralizing antibodies isolated from memory B cells in HIV-infected individuals. Nature. 2009;458:636–640. doi: 10.1038/nature07930. [DOI] [PubMed] [Google Scholar]
  • 21.Wrammert J., Smith K., Miller J., et al. Rapid cloning of high-affinity human monoclonal antibodies against influenza virus. Nature. 2008;453:667–671. doi: 10.1038/nature06890. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Smith K., Garman L., Wrammert J., et al. Rapid generation of fully human monoclonal antibodies specific to a vaccinating antigen. Nat. Protoc. 2009;4:372–384. doi: 10.1038/nprot.2009.3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Tiller T., Meffre E., Yurasov S., et al. Efficient generation of monoclonal antibodies from single human B cells by single cell RT-PCR and expression vector cloning. J. Immunol. Methods. 2008;329:112–124. doi: 10.1016/j.jim.2007.09.017. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Liao H.X., Levesque M.C., Nagel A., et al. Highthroughput isolation of immunoglobulin genes from single human B cells and expression as monoclonal antibodies. J. Virol. Methods. 2009;158:171–179. doi: 10.1016/j.jviromet.2009.02.014. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Lin Z., Chiang N.Y., Chai N., et al. In vivo antigen-driven plasmablast enrichment in combination with antigen-specific cell sorting to facilitate the isolation of rare monoclonal antibodies from human B cells. Nat. Protoc. 2014;9:1563–1577. doi: 10.1038/nprot.2014.104. [DOI] [PubMed] [Google Scholar]
  • 26.Nakamura G., Chai N., Park S., et al. An in vivo human-plasmablast enrichment technique allows rapid identification of therapeutic influenza A antibodies. Cell Host Microbe. 2013;14:93–103. doi: 10.1016/j.chom.2013.06.004. [DOI] [PubMed] [Google Scholar]
  • 27.Tan Y.C., Blum L.K., Kongpachith S., et al. High-throughput sequencing of natively paired antibody chains provides evidence for original antigenic sin shaping the antibody response to influenza vaccination. Clin. Immunol. 2014;151:55–65. doi: 10.1016/j.clim.2013.12.008. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.DeKosky B.J., Ippolito G.C., Deschner R.P., et al. High-throughput sequencing of the paired human immunoglobulin heavy and light chain repertoire. Nat. Biotechnol. 2013;31:166–169. doi: 10.1038/nbt.2492. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Wine Y., Boutz D.R., Lavinder J.J., et al. Molecular deconvolution of the monoclonal antibodies that comprise the polyclonal serum response. Proc. Natl. Acad. Sci. U. S. A. 2013;110:2993–2998. doi: 10.1073/pnas.1213737110. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Cheung W.C., Beausoleil S.A., Zhang X., et al. A proteomics approach for the identification and cloning of monoclonal antibodies from serum. Nat. Biotechnol. 2012;30:447–452. doi: 10.1038/nbt.2167. [DOI] [PubMed] [Google Scholar]
  • 31.Aman P., Ehlin-Henriksson B., Klein G. Epstein–Barr virus susceptibility of normal human B lymphocyte populations. J. Exp. Med. 1984;159:208–220. doi: 10.1084/jem.159.1.208. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.Crain M.J., Sanders S.K., Butler J.L., et al. Epstein–Barr virus preferentially induces proliferation of primed B cells. J. Immunol. 1989;143:1543–1548. [PubMed] [Google Scholar]
  • 33.Laffly E., Sodoyer R. Monoclonal and recombinant antibodies, 30 years after. Hum. Antibodies. 2005;14:33–55. [PubMed] [Google Scholar]
  • 34.Stahli C., Staehelin T., Miggiano V., et al. High frequencies of antigen-specific hybridomas: Dependence on immunization parameters and prediction by spleen cell analysis. J. Immunol. Methods. 1980;32:297–304. doi: 10.1016/0022-1759(80)90194-5. [DOI] [PubMed] [Google Scholar]
  • 35.Banchereau J., Bazan F., Blanchard D., et al. The CD40 antigen and its ligand. Annu. Rev. Immunol. 1994;12:881–922. doi: 10.1146/annurev.iy.12.040194.004313. [DOI] [PubMed] [Google Scholar]
  • 36.Banchereau J., Rousset F. Growing human B lymphocytes in the CD40 system. Nature. 1991;353:678–679. doi: 10.1038/353678a0. [DOI] [PubMed] [Google Scholar]
  • 37.O’Nions J., Allday M.J. Proliferation and differentiation in isogenic populations of peripheral B cells activated by Epstein–Barr virus or T cell-derived mitogens. J. Gen. Virol. 2004;85:881–895. doi: 10.1099/vir.0.19704-0. [DOI] [PubMed] [Google Scholar]
  • 38.Wiesner M., Zentz C., Mayr C., et al. Conditional immortalization of human B cells by CD40 ligation. PLoS ONE. 2008;3:e1464. doi: 10.1371/journal.pone.0001464. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 39.Kwakkenbos M.J., Diehl S.A., Yasuda E., et al. Generation of stable monoclonal antibody-producing B cell receptor-positive human memory B cells by genetic programming. Nat. Med. 2010;16:123–128. doi: 10.1038/nm.2071. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 40.Kwakkenbos M.J., van Helden P.M., Beaumont T., et al. Stable long-term cultures of self-renewing B cells and their applications. Immunol. Rev. 2016;270:65–77. doi: 10.1111/imr.12395. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41.Kwakkenbos M.J., Bakker A.Q., van Helden P.M., et al. Genetic manipulation of B cells for the isolation of rare therapeutic antibodies from the human repertoire. Methods. 2014;65:38–43. doi: 10.1016/j.ymeth.2013.07.002. [DOI] [PubMed] [Google Scholar]

Articles from Molecular Biology are provided here courtesy of Nature Publishing Group

RESOURCES