Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 2012 Dec 29;58(7):741–749. doi: 10.1007/s11434-012-5571-7

Influence of extreme weather and meteorological anomalies on outbreaks of influenza A (H1N1)

Hong Xiao 1, HuaiYu Tian 1,, XiaoLing Lin 1, LiDong Gao 2, XiangYu Dai 1, XiXing Zhang 3, BiYun Chen 3, Jian Zhao 4, JingZhe Xu 1
PMCID: PMC7088951  PMID: 32214743

Abstract

Biological experiments and epidemiological evidence indicate that variations in environment have important effect on the occurrence and transmission of epidemic influenza. It is therefore important to understand the characteristic patterns of transmission for prevention of disease and reduction of disease burden. Based on case records, we analyzed the environmental characteristics including climate variables in Changsha, and then constructed a meteorological anomaly susceptive-infective-removal (SIR) model on the basis of the results of influenza A (H1N1) transmission. The results showed that the outbreak of influenza A (H1N1) in Changsha showed significant correlation with meteorological conditions; the spread of influenza was sensitive to meteorological anomalies, and that the outbreak of influenza A (H1N1) in Changsha was influenced by a combination of absolute humidity anomalous weather conditions, contact rates of the influenza patients and changes in population movements. These findings will provide helpful information regarding prevention strategies under different conditions, a fresh understanding of the emergence and re-emergence of influenza outbreaks, and a new perspective on the transmission dynamics of influenza.

Keywords: influenza A (H1N1), meteorological anomaly, geographic information system, absolute humidity, SIR model

Footnotes

This article is published with open access at Springerlink.com

These authors contributed equally to this work.

References

  • 1.Chowell G, Bertozzi S M, Colchero M A, et al. Severe respiratory disease concurrent with the circulation of H1N1 influenza. N Engl J Med. 2009;361:674–679. doi: 10.1056/NEJMoa0904023. [DOI] [PubMed] [Google Scholar]
  • 2.Morse S S. Pandemic influenza: Studying the lessons of history. Proc Natl Acad Sci USA. 2007;104:7313–7314. doi: 10.1073/pnas.0702659104. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Webster R G, Bean W J, Gorman O T, et al. Evolution and ecology of influenza A viruses. Microbiol Rev. 1992;56:152–179. doi: 10.1128/mr.56.1.152-179.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Fraser C, Cummings D A T, Klinkenberg D, et al. Influenza transmission in households during the 1918 pandemic. Am J Epidemiol. 2011;174:505–514. doi: 10.1093/aje/kwr122. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Taubenberger J, Morens D. 1918 Influenza: The mother of all pandemics. Emerg Infect Dis. 2006;12:15–22. doi: 10.3201/eid1201.051442. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Murray C J L, Lopez A D, Chin B, et al. Estimation of potential global pandemic influenza mortality on the basis of vital registry data from the 1918–20 pandemic: A quantitative analysis. Lancet. 2007;368:2211–2218. doi: 10.1016/S0140-6736(06)69895-4. [DOI] [PubMed] [Google Scholar]
  • 7.Barry J M, Viboud C, Simonsen L. Cross-protection between successive waves of the 1918–1919 influenza pandemic: Epidemiological evidence from US Army camps and from Britain. J Infect Dis. 2008;198:1427–1434. doi: 10.1086/592454. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Cox N, Subbarao K. Global epidemiology of influenza: Past and present. Annu Rev Med. 2000;51:407–421. doi: 10.1146/annurev.med.51.1.407. [DOI] [PubMed] [Google Scholar]
  • 9.Palese P. Influenza: Old and new threats. Nat Med. 2004;10:S82–S87. doi: 10.1038/nm1141. [DOI] [PubMed] [Google Scholar]
  • 10.Fraser C, Donnelly C A, Cauchemez S, et al. Pandemic potential of a strain of influenza A (H1N1): Early findings. Science. 2009;324:1557–1561. doi: 10.1126/science.1176062. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Morens D M, Folkers G K, Fauci A S. The challenge of emerging and re-emerging infectious diseases. Nature. 2004;430:242–249. doi: 10.1038/nature02759. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Dowell S F. Seasonal variation in host susceptibility and cycles of certain infectious diseases. Emerg Infect Dis. 2001;7:369–374. doi: 10.3201/eid0703.010301. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Cannell J J, Vieth R, Umhau J C, et al. Epidemic influenza and vitamin D. Epidemiol Infect. 2006;134:1129–1140. doi: 10.1017/S0950268806007175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Cannell J J, Zasloff M, Garland C F, et al. On the epidemiology of influenza. Virol J. 2008;5:29. doi: 10.1186/1743-422X-5-29. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Shaman J, Jeon C Y, Giovannucci E, et al. Shortcomings of vitamin D-based model simulations of seasonal influenza. PLoS One. 2011;6:e20743. doi: 10.1371/journal.pone.0020743. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Brownstein J S, Wolfe C J, Mandl K D. Empirical evidence for the effect of airline travel on inter-regional influenza spread in the United States. PLoS Med. 2006;3:e401. doi: 10.1371/journal.pmed.0030401. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Cauchemez S, Valleron A J, Boelle P Y, et al. Estimating the impact of school closure on influenza transmission from Sentinel data. Nature. 2008;452:750–754. doi: 10.1038/nature06732. [DOI] [PubMed] [Google Scholar]
  • 18.Cauchemez S, Ferguson N M, Wachtel C, et al. Closure of schools during an influenza pandemic. Lancet Inf Dis. 2009;9:473–481. doi: 10.1016/S1473-3099(09)70176-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Hammond G W, Raddatz R L, Gelskey D E. Impact of atmospheric dispersion and transport of viral aerosols on the epidemiology of influenza. Rev Infect Dis. 1989;11:494–497. doi: 10.1093/clinids/11.3.494. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Li L M. Epidemiology. Beijing: People’s Medical Publishing House; 2008. [Google Scholar]
  • 21.Tellier R. Aerosol transmission of influenza A virus: A review of new studies. J R Soc Interface. 2009;6:S783–S790. doi: 10.1098/rsif.2009.0302.focus. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Simonsen L. The global impact of influenza on morbidity and mortality. Vaccine. 1999;17:S3–S10. doi: 10.1016/S0264-410X(99)00099-7. [DOI] [PubMed] [Google Scholar]
  • 23.Wong C M, Yang L, Chan K P, et al. Influenza-associated hospitalization in a subtropical city. PLoS Med. 2006;3:e121. doi: 10.1371/journal.pmed.0030121. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Russell C A, Jones T C, Barr I G, et al. The global circulation of seasonal influenza A (H3N2) viruses. Science. 2008;320:340–346. doi: 10.1126/science.1154137. [DOI] [PubMed] [Google Scholar]
  • 25.Viboud C, Alonso W J, Simonsen L. Influenza in tropical regions. PLoS Med. 2006;3:e89. doi: 10.1371/journal.pmed.0030089. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Shek L P C, Lee B W. Epidemiology and seasonality of respiratory tract virus infections in the tropics. Paediatr Respir Rev. 2003;4:105–111. doi: 10.1016/S1526-0542(03)00024-1. [DOI] [PubMed] [Google Scholar]
  • 27.Mubareka S, Lowen A C, Steel J, et al. Transmission of influenza virus via aerosols and fomites in the guinea pig model. J Infect Dis. 2009;199:858–865. doi: 10.1086/597073. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Lowen A C, Steel J, Mubareka S, et al. High temperature (30 degrees C) blocks aerosol but not contact transmission of influenza virus. J Virol. 2008;82:5650–5652. doi: 10.1128/JVI.00325-08. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Lowen A C, Mubareka S, Steel J, et al. Influenza virus transmission is dependent on relative humidity and temperature. PLoS Pathog. 2007;3:1470–1476. doi: 10.1371/journal.ppat.0030151. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Lowen A C, Mubareka S, Tumpey T M, et al. The guinea pig as a transmission model for human influenza viruses. Proc Natl Acad Sci USA. 2006;103:9988–9992. doi: 10.1073/pnas.0604157103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31.Schaffer F L, Soergel M E, Straube D C. Survival of airborne influenza virus: Effects of propagating host, relative humidity, and composition of spray fluids. Arch Virol. 1976;51:263–273. doi: 10.1007/BF01317930. [DOI] [PubMed] [Google Scholar]
  • 32.Shaman J, Goldstein E, Lipsitch M. Absolute humidity and pandemic versus epidemic influenza. Am J Epidemiol. 2011;173:127–135. doi: 10.1093/aje/kwq347. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33.Shaman J, Kohn M. Absolute humidity modulates influenza survival, transmission, and seasonality. Proc Natl Acad Sci USA. 2009;106:3243–3248. doi: 10.1073/pnas.0806852106. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.Shaman J, Pitzer V E, Viboud C, et al. Absolute humidity and the seasonal onset of influenza in the continental United States. PLoS Biol. 2010;8:e1000316. doi: 10.1371/journal.pbio.1000316. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35.Minhaz Ud-Dean S. Structural explanation for the effect of humidity on persistence of airborne virus: Seasonality of influenza. J Theor Biol. 2010;264:822–829. doi: 10.1016/j.jtbi.2010.03.013. [DOI] [PubMed] [Google Scholar]
  • 36.Brian H, Birthe B. Aerosol influenza transmission risk contours: A study of humid tropics versus winter temperate zone. Virol J. 2010;7:98. doi: 10.1186/1743-422X-7-98. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37.Schulman J L, Kilbourne E D. Experimental transmission of influenza virus infection in mice. II. Some facotrs affecting the incidence of transmitted infection. J Exp Med. 1967;118:267–275. doi: 10.1084/jem.118.2.267. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38.Harper G. Airborne micro-organisms: Survival tests with four viruses. J Hyg. 1961;59:479–486. doi: 10.1017/S0022172400039176. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 39.Hemmes J H, Winkler K C, Kool S M. Virus survival as a seasonal factor in influenza and poliomyelitis. Nature. 1960;188:430–431. doi: 10.1038/188430a0. [DOI] [PubMed] [Google Scholar]
  • 40.Xiao H, Tian H Y, Zhao J, et al. Study on meteorological factors during the Changsha pandemic influenza A (H1N1) epidemics. Chin J Epidemiol. 2011;32:529–530. [Google Scholar]
  • 41.Shi Y L. Stochastic dynamic model of SARS spreading. Chin Sci Bull. 2003;48:1373–1377. doi: 10.1007/BF03184164. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42.Wang H Y, Rong F, Ke F J, et al. Control dynamics of severe acute respiratory syndrome transmission. Chin Sci Bull. 2003;48:2684–2687. doi: 10.1007/BF02901756. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 43.Chang C Y, Cao C X, Wang Q, et al. The novel H1N1 influenza A global airline transmission and early warning without travel containments. Chin Sci Bull. 2010;55:3030–3036. doi: 10.1007/s11434-010-3180-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 44.Xiao H, Tian H Y, Zhao J I, et al. nfluenza A (H1N1) transmission by road traffic between cities and towns. Chin Sci Bull. 2011;56:2613–2620. doi: 10.1007/s11434-011-4598-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 45.Mills C E, Robins J M, Lipsitch M. Transmissibility of 1918 pandemic influenza. Nature. 2004;432:904–906. doi: 10.1038/nature03063. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 46.Ferguson N M, Cummings D A T, Cauchemez S, et al. Strategies for containing an emerging influenza pandemic in Southeast Asia. Nature. 2005;437:209–214. doi: 10.1038/nature04017. [DOI] [PubMed] [Google Scholar]
  • 47.Ferguson N M, Cummings D A T, Fraser C, et al. Strategies for mitigating an influenza pandemic. Nature. 2006;442:448–452. doi: 10.1038/nature04795. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 48.Longini I M, Nizam A, Xu S, et al. Containing pandemic influenza at the source. Science. 2005;309:1083–1087. doi: 10.1126/science.1115717. [DOI] [PubMed] [Google Scholar]
  • 49.Vynnycky E, Trindall A, Mangtani P. Estimates of the reproduction numbers of Spanish influenza using morbidity data. Int J Epidemiol. 2007;36:881–889. doi: 10.1093/ije/dym071. [DOI] [PubMed] [Google Scholar]
  • 50.Lessler J, Cummings D A T, Fishman S, et al. Transmissibility of swine flu at Fort Dix, 1976. J R Soc Interface. 2007;4:755–762. doi: 10.1098/rsif.2007.0228. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 51.Lipsitch M, Viboud C. Influenza seasonality: Lifting the fog. Proc Natl Acad Sci USA. 2009;106:3645–3646. doi: 10.1073/pnas.0900933106. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 52.Tamerius J D, Wise E K, Uejio C K, et al. Climate and human health: Synthesizing environmental complexity and uncertainty. Stoch Env Res Risk A. 2007;21:601–613. doi: 10.1007/s00477-007-0142-1. [DOI] [Google Scholar]
  • 53.Chen H B, Fan X H. Some extreme events of weather, climate and related phenomena in 2009. Clim Environ Res. 2010;15:322–336. [Google Scholar]
  • 54.Lu A G, Ge J P, Pang D Q, et al. Asynchronous Response of Droughts to ENSO in China. J Glaciol Geocryol. 2006;28:535–542. [Google Scholar]
  • 55.Viboud C, Pakdaman K, Boëlle P Y, et al. Association of influenza epidemics with global climate variability. Eur J Epidemiol. 2004;19:1055–1059. doi: 10.1007/s10654-004-2450-9. [DOI] [PubMed] [Google Scholar]
  • 56.Merler S, Ajelli M. The role of population heterogeneity and human mobility in the spread of pandemic influenza. Proc Biol Sci. 2010;277:557–565. doi: 10.1098/rspb.2009.1605. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Chinese Science Bulletin = Kexue Tongbao are provided here courtesy of Nature Publishing Group

RESOURCES