Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 2006 Mar 25;49(2):8. doi: 10.1007/s11427-006-0158-7

Identification of one peptide which inhibited infectivity of avian infectious bronchitis virus in vitro

Bo Peng 1, Hanyang Chen 1, Yadi Tan 1,2, Meilin Jin 1,2, Huanchun Chen 1,2, Aizhen Guo 1,2,
PMCID: PMC7088975  PMID: 16704119

Abstract

Purified avian infectious bronchitis virus (IBV) was used to screen a random phage display peptide library. After the fourth panning, 10 positive phages were sequenced and characterized. The phages specifically inhibited IBV infectivity in HeLa cells and blocked IBV haemagglutination. One linear peptide “GSH HRH VHS PFV” from the positive phages with the highest neutralization titer was synthesized and this peptide inhibited IBV infection in HeLa as well. The results may contribute to development of antiviral therapeutics for IBV and studying the determinants for viral and cell interaction.

Keywords: avian infectious bronchitis virus, phage display, peptides

References

  • 1.Holmes K. V., et al. Coronaviruses. In: Knipe D. M., Howley P. M., Griffin D. E., et al., editors. Fields Virology. Philadelphia: Lippincott Williams & Wilkins; 2001. pp. 1187–1203. [Google Scholar]
  • 2.Fouchier R. A., Kuiken T., Schutten M., et al. Aetiology: Koch’s postulates fulfilled for SARS virus. Nature. 2003;423(6937):240. doi: 10.1038/423240a. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Cavanagh D., Naqi S., et al. Infectious bronchitis. In: Saif Y. M., Barnes H. J., Glisson J. R., et al., editors. Diseases of Poultry. 11th ed. Ames: Iowa State Press; 2003. pp. 101–119. [Google Scholar]
  • 4.Cavanagh D. Severe acute respiratory syndrome vaccine development: Experiences of vaccination against avian infectious bronchitis coronavirus. Avian Pathol. 2003;32(6):567–582. doi: 10.1080/03079450310001621198. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Jin W. W., Chen C., Zhang Y., et al. Genome sequencing and characterization analysis of a Beijing isolate of chicken coronavirus infectious bronchitis virus. Chinese Sci. Bull. 2004;49(6):585–590. doi: 10.1360/03wc0347. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Otsuki K., Noro K., Yamamoto H., et al. Studies on avian infectious bronchitis virus (IBV). II. Propagation of IBV in several cultured cells. Arch. Virol. 1979;60(2):115–122. doi: 10.1007/BF01348027. [DOI] [PubMed] [Google Scholar]
  • 7.King D. J. A comparison of infectious bronchitis virus hemagglutination inhibition test procedures. Avian Dis. 1988;32(2):335–341. doi: 10.2307/1590823. [DOI] [PubMed] [Google Scholar]
  • 8.Corbo L. J., Cunningham C. H. Hamagglutination by trypsinmodified infectious bronchitis virus. Am. J. Vet. Res. 1959;20:876–883. [PubMed] [Google Scholar]
  • 9.Xu W. Y. Veterinary Virology. Beijing: China Agricultural Press; 1993. pp. 226–229. [Google Scholar]
  • 10.Wang L. F., Yu M. Epitope identification and discovery using phage display libraries: Applications in vaccine development and diagnostics. Curr. Drug Targets. 2004;5(1):1–15. doi: 10.2174/1389450043490668. [DOI] [PubMed] [Google Scholar]
  • 11.Higo-Moriguchi K., Akahori Y., Iba Y., et al. Isolation of human monoclonal antibodies that neutralize human rotavirus. J. Virol. 2004;78(7):3325–3332. doi: 10.1128/JVI.78.7.3325-3332.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Fontana L., Nuzzo M., Urbanelli L., et al. General strategy for broadening adenovirus tropism. J. Virol. 2003;77(20):11094–11104. doi: 10.1128/JVI.77.20.11094-11104.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Cao J., Zhao P., Miao X. H., et al. Phage display selection on whole cells yields a small peptide specific for HCV receptor human CD81. Cell Res. 2003;13(6):473–479. doi: 10.1038/sj.cr.7290190. [DOI] [PubMed] [Google Scholar]
  • 14.Moulard M., Phogat S. K., Shu Y. W., et al. Broadly cross-reactive HIV-1-neutralizing human monoclonal Fab selected for binding to gp120-CD4-CCR5 complexes. Proc. Natl. Acad. Sci. USA. 2002;99(10):6913–6918. doi: 10.1073/pnas.102562599. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Jolly C. L., Huang J. A., Holmes I. H. Selection of rotavirus VP4 cell receptor binding domains for MA104 cells using a phage display library. J. Virol. Methods. 2001;98(1):41–51. doi: 10.1016/S0166-0934(01)00357-3. [DOI] [PubMed] [Google Scholar]
  • 16.Hu C., Zhang P., Liu X., et al. Characterization of a region involved in binding of measles virus H protein and its receptor SLAM (CD150) Biochem. Biophys. Res. Commun. 2004;316(3):698–704. doi: 10.1016/j.bbrc.2004.02.106. [DOI] [PubMed] [Google Scholar]
  • 17.Lamarre A., Talbot P. J. Characterization of phage-displayed recombinant anti-idiotypic antibody fragments against coronavirus-neutralizing monoclonal antibodies. Viral. Immunol. 1997;10(4):175–182. doi: 10.1089/vim.1997.10.175. [DOI] [PubMed] [Google Scholar]
  • 18.Yu M. W., Scott J. K., Fournier A., et al. Characterization of murine coronavirus neutralization epitopes with phage-displayed peptides. Virology. 2000;271(1):182–196. doi: 10.1006/viro.2000.0310. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Sui J., Li W. H., Murakami A., et al. Potent neutralization of severe acute respiratory syndrome (SARS) coronavirus by a human mAb to S1 protein that blocks receptor association. Proc. Natl. Acad. Sci. USA. 2004;101(8):2536–2541. doi: 10.1073/pnas.0307140101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Schultze B., Enjuanes L., Cavanagh D., et al. N-acetylneuraminic acid plays a critical role for the haemagglutinating activity of avian infectious bronchitis virus and porcine transmissible gastroenteritis virus. Adv. Exp. Med. Biol. 1993;342:305–310. doi: 10.1007/978-1-4615-2996-5_47. [DOI] [PubMed] [Google Scholar]
  • 21.Krempl C., Schultze B., Laude H., et al. Point mutations in the S protein connect the sialic acid binding activity with the enteropathogenicity of transmissible gastroenteritis coronavirus by analysis of haemagglutination-deficient mutants. J. Virol. 1997;71(4):3285–3287. doi: 10.1128/jvi.71.4.3285-3287.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Laude H., Godet M., Bernard S., et al. Functional domains in the spike protein of transmissible gastroenteritis virus. Adv. Exp. Med. Biol. 1995;380:299–304. doi: 10.1007/978-1-4615-1899-0_48. [DOI] [PubMed] [Google Scholar]
  • 23.Krempl C., Ballesteros M. L., Zimmer G., et al. Characterization of the sialic acid binding activity of transmissible gastroenteritis coronavirus by analysis of haemagglutination-deficient mutants. J. Gen. Virol. 2000;81:489–496. doi: 10.1099/0022-1317-81-2-489. [DOI] [PubMed] [Google Scholar]
  • 24.Miguel B., Pharr G. T., Wang C. The role of feline aminopeptidase N as a receptor for infectious bronchitis virus. Arch. Virol. 2002;147(11):2047–2056. doi: 10.1007/s00705-002-0888-1. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Science in China. Series C, Life Sciences are provided here courtesy of Nature Publishing Group

RESOURCES