Abstract
Ammonia has been considered the contaminant primarily responsible for respiratory disease in poultry. Even though it can cause tracheal lesions, its adverse effects on the trachea have not been sufficiently studied. The present study investigated tracheal changes in Arbor Acres broilers (Gallus gallus) induced by high concentration of ammonia using isobaric tag for relative and absolute quantification (iTRAQ)-based proteome analysis. In total, 3,706 proteins within false discovery rate of 1% were identified, including 119 significantly differentially expressed proteins. Functional analysis revealed that proteins related to immune response and muscle contraction were significantly enriched. With respect to the immune response, up-regulated proteins (like FGA) were pro-inflammatory, while down-regulated proteins participated in antigen processing and antigen presenting (like MYO1G), immunoglobulin and cathelicidin production (like fowlicidin-2), and immunodeficiency (like PTPRC). Regarding muscle contraction, all differentially expressed proteins (like TPM1) were up-regulated. An over-expression of mucin, which is a common feature of airway disease, was also observed. Additionally, the transcriptional alterations of 6 selected proteins were analyzed by quantitative RT-PCR. Overall, proteomic changes suggested the onset of airway obstruction and diminished host defense in trachea after ammonia exposure. These results may serve as a valuable reference for future interventions against ammonia toxicity.
Electronic Supplementary Material
Supplementary material is available for this article at 10.1007/s11427-016-0202-8 and is accessible for authorized users.
Keywords: ammonia, broiler, proteomics, trachea
Electronic supplementary material
Table S1, Description of the 3706 identified proteins in the broiler tracheal sample
Table S2, The list of the 119 differential expressed proteins
Table S3, The primers used for the amplification of target genes
Footnotes
This article is published with open access at link.springer.com
References
- Al-Mashhadani E.H., Beck M.M. Effect of atmospheric ammonia on the surface ultrastructure of the lung and trachea of broiler chicks. Poultry Sci. 1985;64:2056–2061. doi: 10.3382/ps.0642056. [DOI] [PubMed] [Google Scholar]
- Al-Shboul O.A., Mustafa A., Mohammad M., Al-Shehabat M., Yousef A., Al-hashimi F. Effect of oxidative stress on the expression of thin filament-associated proteins in gastric smooth muscle cells. Cell Biochem Biophys. 2014;70:225–231. doi: 10.1007/s12013-014-9886-7. [DOI] [PubMed] [Google Scholar]
- Al Khamici H., Brown L.J., Hossain K.R., Hudson A.L., Sinclair-Burton A.A., Ng J.P.M., Daniel E.L., Hare J.E., Cornell B.A., Curmi P.M.G., Davey M.W., Valenzuela S.M., Netto L.E.S. Members of the chloride intracellular ion channel protein family demonstrate glutaredoxin-like enzymatic activity. PLoS ONE. 2015;10:e115699. doi: 10.1371/journal.pone.0115699. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Anderson D.P., Beard C.W., Hanson R.P. The adverse effects of ammonia on chickens including resistance to infection with newcastle disease virus. Avian Dis. 1964;8:369–379. doi: 10.2307/1587967. [DOI] [PubMed] [Google Scholar]
- Beers C., Burich A., Kleijmeer M.J., Griffith J.M., Wong P., Rudensky A.Y. Cathepsin S controls MHC class II-mediated antigen presentation by epithelial cells in vivo. J Immunol. 2005;174:1205–1212. doi: 10.4049/jimmunol.174.3.1205. [DOI] [PubMed] [Google Scholar]
- Beker A., Vanhooser S.L., Swartzlander J.H., Teeter R.G. Atmospheric ammonia concentration effects on broiler growth and performance1. J Appl Poultry Res. 2004;13:5–9. doi: 10.1093/japr/13.1.5. [DOI] [Google Scholar]
- Betteridge D.J. What is oxidative stress. Metab Clin Exp. 2000;49:3–8. doi: 10.1016/S0026-0495(00)80077-3. [DOI] [PubMed] [Google Scholar]
- Bobermin L.D., Quincozes-Santos A., Guerra M.C., Leite M.C., Souza D.O., Gonçalves C.A., Gottfried C., Arai K. Resveratrol prevents ammonia toxicity in astroglial cells. PLoS ONE. 2012;7:e52164. doi: 10.1371/journal.pone.0052164. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cao Z., Han Z., Shao Y., Geng H., Kong X., Liu S. Proteomic analysis of chicken embryonic trachea and kidney tissues after infection in ovo by avian infectious bronchitis coronavirus. Proteome Sci. 2011;9:1–17. doi: 10.1186/1477-5956-9-11. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cao Z., Han Z., Shao Y., Liu X., Sun J., Yu D., Kong X., Liu S. Proteomics analysis of differentially expressed proteins in chicken trachea and kidney after infection with the highly virulent and attenuated coronavirus infectious bronchitis virus in vivo. Proteome Sci. 2012;10:1–19. doi: 10.1186/1477-5956-10-24. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Caveny D.D., Quarles C.L., Greathouse G.A. Atmospheric ammonia and broiler cockerel performance. Poultry Sci. 1981;60:513–516. doi: 10.3382/ps.0600513. [DOI] [Google Scholar]
- Cheng C.H., Yang F.F., Ling R.Z., Liao S.A., Miao Y.T., Ye C.X., Wang A.L. Effects of ammonia exposure on apoptosis, oxidative stress and immune response in pufferfish (Takifugu obscurus) Aquatic Toxicol. 2015;164:61–71. doi: 10.1016/j.aquatox.2015.04.004. [DOI] [PubMed] [Google Scholar]
- Ching B., Chew S.F., Wong W.P., Ip Y.K. Environmental ammonia exposure induces oxidative stress in gills and brain of Boleophthalmus boddarti (mudskipper) Aquatic Toxicol. 2009;95:203–212. doi: 10.1016/j.aquatox.2009.09.004. [DOI] [PubMed] [Google Scholar]
- Coble D.J., Fleming D., Persia M.E., Ashwell C.M., Rothschild M.F., Schmidt C.J., Lamont S.J. RNA-seq analysis of broiler liver transcriptome reveals novel responses to high ambient temperature. BMC Genomics. 2014;15:1084. doi: 10.1186/1471-2164-15-1084. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Irving M., Corrie J.E.T., Brandmeier B.D., Ferguson R.E., Trentham D.R., Kendrick-Jones J., Hopkins S.C., Heide U.A., Goldman Y.E., Sabido-David C., Dale R.E., Criddle S. Dynamic measurement of myosin light-chain-domain tilt and twist in muscle contraction. Nature. 1999;400:425–430. doi: 10.1038/22704. [DOI] [PubMed] [Google Scholar]
- Dall E., Brandstetter H. Structure and function of legumain in health and disease. Biochimie. 2016;122:126–150. doi: 10.1016/j.biochi.2015.09.022. [DOI] [PubMed] [Google Scholar]
- David B., Mejdell C., Michel V., Lund V., Oppermann Moe R. Air quality in alternative housing systems may have an impact on laying hen welfare. Part II—Ammonia. Animals (Basel) 2015;5:886–896. doi: 10.3390/ani5030389. [DOI] [PMC free article] [PubMed] [Google Scholar]
- de Sousa Abreu R., Penalva L.O., Marcotte E.M., Vogel C. Global signatures of protein and mRNA expression levels. Mol Biosyst. 2009;5:1512–1526. doi: 10.1039/b908315d. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dominguez R., Freyzon Y., Trybus K.M., Cohen C. Crystal structure of a vertebrate smooth muscle myosin motor domain and its complex with the essential light chain. Cell. 1998;94:559–571. doi: 10.1016/S0092-8674(00)81598-6. [DOI] [PubMed] [Google Scholar]
- Dröse S., Brandt U. The mechanism of mitochondrial superoxide production by the cytochrome bc1 complex. J Biol Chem. 2008;283:21649–21654. doi: 10.1074/jbc.M803236200. [DOI] [PubMed] [Google Scholar]
- Dröge W. Free radicals in the physiological control of cell function. Physiol Rev. 2002;82:47–95. doi: 10.1152/physrev.00018.2001. [DOI] [PubMed] [Google Scholar]
- Eisenberg E., Hill T. Muscle contraction and free energy transduction in biological systems. Science. 1985;227:999–1006. doi: 10.1126/science.3156404. [DOI] [PubMed] [Google Scholar]
- Farah C.S., Reinach F.C. The troponin complex and regulation of muscle contraction. FASEB J. 1995;9:755–767. doi: 10.1096/fasebj.9.9.7601340. [DOI] [PubMed] [Google Scholar]
- Fidanci U.R., Yavuz H., Kum C., Kiral F., Ozdemir M., Sekkin S., Filazi A. Effects of ammonia and nitrite-nitrate concentrations on thyroid hormones and variables parameters of broilers in poorly ventilated poultry houses. J Animal Veterinary Adv. 2010;9:346–353. doi: 10.3923/javaa.2010.346.353. [DOI] [Google Scholar]
- Fischer A.H., Jacobson K.A., Rose J., Zeller R. Basic Methods in Microscopy. Cold Spring Harbor: Cold Spring Harbor Laboratory Press; 2006. Hematoxylin and eosin staining of tissue and cell sections. [Google Scholar]
- Frantz C., Stewart K.M., Weaver V.M. The extracellular matrix at a glance. J Cell Sci. 2010;123:4195–4200. doi: 10.1242/jcs.023820. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gérard A., Patino-Lopez G., Beemiller P., Nambiar R., Ben-Aissa K., Liu Y., Totah F.J., Tyska M.J., Shaw S., Krummel M.F. Detection of rare antigen-presenting cells through T cell-intrinsic meandering motility, mediated by Myo1g. Cell. 2014;158:492–505. doi: 10.1016/j.cell.2014.05.044. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gao Z., Ma W., Zhu G., Roelcke M. Estimating farm-gate ammonia emissions from major animal production systems in China. Atmos Environ. 2013;79:20–28. doi: 10.1016/j.atmosenv.2013.06.025. [DOI] [Google Scholar]
- Cooper G.M. The Cell: a Molecular Approach. Sunderland (MA): Sinauer Associates; 2000. [Google Scholar]
- He F.C. Lifeomics leads the age of grand discoveries. Sci China Life Sci. 2013;56:201–212. doi: 10.1007/s11427-013-4464-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jalilian C., Gallant E.M., Board P.G., Dulhunty A.F. Redox potential and the response of cardiac ryanodine receptors to CLIC-2, a member of the glutathione S-transferase structural family. Antioxid Redox Signal. 2008;10:1675–1686. doi: 10.1089/ars.2007.1994. [DOI] [PubMed] [Google Scholar]
- Jennewein C., Tran N., Paulus P., Ellinghaus P., Eble J.A., Zacharowski K. Novel aspects of fibrin(ogen) fragments during inflammation. Mol Med. 2011;17:568–573. doi: 10.2119/molmed.2010.00146. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kamath S., Lip G.Y.H. Fibrinogen: biochemistry, epidemiology and determinants. QJM. 2003;96:711–729. doi: 10.1093/qjmed/hcg129. [DOI] [PubMed] [Google Scholar]
- Kim D.K., Lillehoj H.S., Lee K.W., Jang S.I., Neumann A.P., Siragusa G.R., Lillehoj E.P., Hong Y.H. Genome-wide differential gene expression profiles in broiler chickens with gangrenous dermatitis. Avian Dis. 2012;56:670–679. doi: 10.1637/10069-013112-Reg.1. [DOI] [PubMed] [Google Scholar]
- Kling H.F., Quarles C.L. Effect of atmospheric ammonia and the stress of infectious bronchitis vaccination on leghorn males. Poultry Sci. 1974;53:1161–1167. doi: 10.3382/ps.0531161. [DOI] [PubMed] [Google Scholar]
- Kosenko E., Venediktova N., Kaminsky Y., Montoliu C., Felipo V. Sources of oxygen radicals in brain in acute ammonia intoxication in vivo. Brain Res. 2003;981:193–200. doi: 10.1016/S0006-8993(03)03035-X. [DOI] [PubMed] [Google Scholar]
- Kristensen H.H., Wathes C.M. Ammonia and poultry welfare: a review. Worlds Poult Sci J. 2000;56:235–245. doi: 10.1079/WPS20000018. [DOI] [Google Scholar]
- Kubo E., Hasanova N., Fatma N., Sasaki H., Singh D.P. Elevated tropomyosin expression is associated with epithelial-mesenchymal transition of lens epithelial cells. J Cell Mol Med. 2013;17:212–221. doi: 10.1111/j.1582-4934.2012.01654.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chatila T., Kung C., Pingel J.T., Heikinheimo M., Klemola T., Varkila K., Yoo L.I., Vuopala K., Poyhonen M., Uhari M., Rogers M., Speck S.H., Thomas M.L. Mutations in the tyrosine phosphatase CD45 gene in a child with severe combined immunodeficiency disease. Nat Med. 2000;6:343–345. doi: 10.1038/73208. [DOI] [PubMed] [Google Scholar]
- Leng F.W. Opportunity and challenge: ten years of proteomics in China. Sci China Life Sci. 2012;55:837–839. doi: 10.1007/s11427-012-4372-1. [DOI] [PubMed] [Google Scholar]
- Li M., Gong S., Li Q., Yuan L., Meng F., Wang R. Ammonia toxicity induces glutamine accumulation, oxidative stress and immunosuppression in juvenile yellow catfish Pelteobagrus fulvidraco. Comp Biochem Physiol C Toxicol Pharmacol. 2016;183–184:1–6. doi: 10.1016/j.cbpc.2016.01.005. [DOI] [PubMed] [Google Scholar]
- Liu X., Yao M., Li N., Wang C., Zheng Y., Cao X. CaMKII promotes TLR-triggered proinflammatory cytokine and type I interferon production by directly binding and activating TAK1 and IRF3 in macrophages. Blood. 2008;112:4961–4970. doi: 10.1182/blood-2008-03-144022. [DOI] [PubMed] [Google Scholar]
- Livak K.J., Schmittgen T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods. 2001;25:402–408. doi: 10.1006/meth.2001.1262. [DOI] [PubMed] [Google Scholar]
- Lourenço dos Santos S., Baraibar M.A., Lundberg S., Eeg-Olofsson O., Larsson L., Friguet B. Oxidative proteome alterations during skeletal muscle ageing. Redox Biol. 2015;5:267–274. doi: 10.1016/j.redox.2015.05.006. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McRonald F.E., Risk J.M., Hodges N.J., Blagosklonny M.V. Protection from intracellular oxidative stress by cytoglobin in normal and cancerous oesophageal cells. PLoS ONE. 2012;7:e30587. doi: 10.1371/journal.pone.0030587. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mi H., Muruganujan A., Casagrande J.T., Thomas P.D. Largescale gene function analysis with the PANTHER classification system. Nat Protoc. 2013;8:1551–1566. doi: 10.1038/nprot.2013.092. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Miles D.M., Branton S.L., Lott B.D. Atmospheric ammonia is detrimental to the performance of modern commercial broilers. Poultry Sci. 2004;83:1650–1654. doi: 10.1093/ps/83.10.1650. [DOI] [PubMed] [Google Scholar]
- Mooster J.L., Le Bras S., Massaad M.J., Jabara H., Yoon J., Galand C., Heesters B.A., Burton O.T., Mattoo H., Manis J., Geha R.S. Defective lymphoid organogenesis underlies the immune deficiency caused by a heterozygous S32I mutation in IκBa. J Exp Med. 2015;212:185–202. doi: 10.1084/jem.20140979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nagaraja K.V., Emery D.A., Jordan K.A., Newman J.A., Pomeroy B.S. Scanning electron microscopic studies of adverse effects of ammonia on tracheal tissues of turkeys. Am J Vet Res. 1983;44:1530–1536. [PubMed] [Google Scholar]
- National Research Council NRC . Nutrient Requirements of Poultry. 9. Washington: National Academy Press; 1994. [Google Scholar]
- Paolini M. Induction of cytochrome P450 enzymes and over-generation of oxygen radicals in beta-carotene supplemented rats. Carcinogenesis. 2001;22:1483–1495. doi: 10.1093/carcin/22.9.1483. [DOI] [PubMed] [Google Scholar]
- Powers S.K., Jackson M.J. Exercise-induced oxidative stress: cellular mechanisms and impact on muscle force production. Physiol Rev. 2008;88:1243–1276. doi: 10.1152/physrev.00031.2007. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Puchelle E., de Bentzmann S., Zahm J.M. Physical and functional properties of airway secretions in cystic fibrosis—therapeutic approaches. Respiration. 1995;62(1):2–12. doi: 10.1159/000196486. [DOI] [PubMed] [Google Scholar]
- Rogers D. F. Airway mucus hypersecretion in asthma: an undervalued pathology. Curr Opin Pharmacol. 2004;4:241–250. doi: 10.1016/j.coph.2004.01.011. [DOI] [PubMed] [Google Scholar]
- Sanders P.N., Koval O.M., Jaffer O.A., Prasad A.M., Businga T.R., Scott J.A., Hayden P.J., Luczak E.D., Dickey D.D., Allamargot C., Olivier A.K., Meyerholz D.K., Robison A.J., Winder D.G., Blackwell T.S., Dworski R., Sammut D., Wagner B.A., Buettner G.R., Pope R.M., Miller F.J., Dibbern M.E., Haitchi H.M., Mohler P.J., Howarth P.H., Zabner J., Kline J.N., Grumbach I.M., Anderson M.E. CaMKII is essential for the proasthmatic effects of oxidation. Sci Transl Med. 2013;5:195. doi: 10.1126/scitranslmed.3006135. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schild H., Rammensee H.G. gp96—the immune system’s Swiss army knife. Nat Immunol. 2000;1:100–101. doi: 10.1038/77770. [DOI] [PubMed] [Google Scholar]
- Schneider M. The importance of ammonia in mammalian cell culture. J Biotech. 1996;46:161–185. doi: 10.1016/0168-1656(95)00196-4. [DOI] [PubMed] [Google Scholar]
- Sorokin L. The impact of the extracellular matrix on inflammation. Nat Rev Immunol. 2010;10:712–723. doi: 10.1038/nri2852. [DOI] [PubMed] [Google Scholar]
- Staron M., Yang Y., Liu B., Li J., Shen Y., Zuniga-Pflucker J.C., Aguila H.L., Goldschneider I., Li Z. gp96, an endoplasmic reticulum master chaperone for integrins and Toll-like receptors, selectively regulates early T and B lymphopoiesis. Blood. 2010;115:2380–2390. doi: 10.1182/blood-2009-07-233031. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Steinbacher P., Eckl P. Impact of oxidative stress on exercising skeletal muscle. Biomolecules. 2015;5:356–377. doi: 10.3390/biom5020356. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sun J., Han Z., Shao Y., Cao Z., Kong X., Liu S. Comparative proteome analysis of tracheal tissues in response to infectious bronchitis coronavirus, Newcastle disease virus, and avian influenza virus H9 subtype virus infection. Proteomics. 2014;14:1403–1423. doi: 10.1002/pmic.201300404. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sun J., Luan Y., Xiang D., Tan X., Chen H., Deng Q., Zhang J., Chen M., Huang H., Wang W., Niu T., Li W., Peng H., Li S., Li L., Tang W., Li X., Wu D., Wang P. The 11S proteasome subunit PSME3 is a positive feedforward regulator of NF-κB and important for host defense against bacterial pathogens. Cell Rep. 2016;14:737–749. doi: 10.1016/j.celrep.2015.12.069. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tang X., Meng Q., Gao J., Zhang S., Zhang H., Zhang M. Label-free quantitative analysis of changes in broiler liver proteins under heat stress using SWATH-MS technology. Sci Rep. 2015;5:15119. doi: 10.1038/srep15119. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thornton D.J., Rousseau K., McGuckin M.A. Structure and function of the polymeric mucins in airways mucus. Annu Rev Physiol. 2008;70:459–486. doi: 10.1146/annurev.physiol.70.113006.100702. [DOI] [PubMed] [Google Scholar]
- Turner J., Jones C.E. Regulation of mucin expression in respiratory diseases. Biochm Soc Trans. 2009;37:877–881. doi: 10.1042/BST0370877. [DOI] [PubMed] [Google Scholar]
- Veal E.A., Toone W.M., Jones N., Morgan B.A. Distinct roles for glutathione S-transferases in the oxidative stress response in Schizosaccharomyces pombe. J Biol Chem. 2002;277:35523–35531. doi: 10.1074/jbc.M111548200. [DOI] [PubMed] [Google Scholar]
- Wang K. Titin/connectin and nebulin: giant protein rulers of muscle structure and function. Adv Biophys. 1996;33:123–134. doi: 10.1016/0065-227X(96)81668-6. [DOI] [PubMed] [Google Scholar]
- Wiśniewski J.R., Zougman A., Nagaraj N., Mann M. Universal sample preparation method for proteome analysis. Nat Meth. 2009;6:359–362. doi: 10.1038/nmeth.1322. [DOI] [PubMed] [Google Scholar]
- Xiao Y., Herrera A.I., Bommineni Y.R., Soulages J.L., Prakash O., Zhang G. The central kink region of fowlicidin-2, an alphahelical host defense peptide, is critically involved in bacterial killing and endotoxin neutralization. J Innate Immun. 2009;1:268–280. doi: 10.1159/000174822. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Qinghong S., Shen G., Lina S., Yueming Z., Xiaoou L., Jianlin W., Chengyan H., Hongjun L., Haifeng Z. Comparative proteomics analysis of differential proteins in respond to doxorubicin resistance in myelogenous leukemia cell lines. Proteome Sci. 2015;13:1–11. doi: 10.1186/s12953-014-0057-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhang J.M., An J. Cytokines, inflammation, and pain. Int Anesthesiol Clin. 2007;45:27–37. doi: 10.1097/AIA.0b013e318034194e. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhang J., Li C., Tang X., Lu Q., Sa R., Zhang H., Zahedi R.P. High concentrations of atmospheric ammonia induce alterations in the hepatic proteome of broilers (Gallus gallus): an iTRAQ-based quantitative proteomic analysis. PLoS ONE. 2015;10:e0123596. doi: 10.1371/journal.pone.0123596. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhang J., Li C., Tang X., Lu Q., Sa R., Zhang H. Proteome changes in the small intestinal mucosa of broilers (Gallus gallus) induced by high concentrations of atmospheric ammonia. Proteome Sci. 2015;13:9. doi: 10.1186/s12953-015-0067-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhou C., Walker M.J., Williamson A.J.K., Pierce A., Berzuini C., Dive C., Whetton A.D. A hierarchical statistical modeling approach to analyze proteomic isobaric tag for relative and absolute quantitation data. Bioinformatics. 2013;30:549–558. doi: 10.1093/bioinformatics/btt722. [DOI] [PubMed] [Google Scholar]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Table S1, Description of the 3706 identified proteins in the broiler tracheal sample
Table S2, The list of the 119 differential expressed proteins
Table S3, The primers used for the amplification of target genes
