Abstract
The rapid growth of the global HIV/AIDS epidemic makes it a high priority to develop an effective vaccine. Since a live attenuated or inactivated HIV vaccine is not likely to be approved for clinical application due to safety concerns, HIV virus like particles (VLPs) offer an attractive alternative because they are considered safer since they lack viral genome. We got a stable eukaryotic cell line by G418 resistance selection, engineered to express the HIV-1 structure protein Gag and Env efficiently and stably. We confirmed the presence of Gag and Env proteins in the cell culture supernatant and that they could self-assemble into VLPs. These VLPs were found to be able to elicit specific humoral and cellular immune response after immunization without any adjuvant.
Keywords: HIV-1, cotransfection, stable cell line, virus-like particles (VLPs), vaccine
Footnotes
This article is published with open access at Springerlink.com
Contributor Information
XiangHui Yu, Email: xianghui@jlu.edu.cn.
Wei Kong, Email: weikong@jlu.edu.cn.
References
- 1.Gamble L. J., Matthews Q. L. Current progress in the development of a prophylactic vaccine for HIV-1. Drug Des Devel Ther. 2010;5:9–26. doi: 10.2147/DDDT.S6959. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 2.Fenouillet E., Barbouche R., Jones I. M. Cell entry by enveloped viruses: redox considerations for HIV and SARS-coronavirus. Antioxid Redox Sign. 2007;9:1009–1034. doi: 10.1089/ars.2007.1639. [DOI] [PubMed] [Google Scholar]
- 3.Devico A., Fouts T., Lewis G. K., et al. Antibodies to CD4-induced sites in HIV gp120 correlate with the control of SHIV challenge in macaques vaccinated with subunit immunogens. Proc Natl Acad Sci USA. 2007;104:17477–17482. doi: 10.1073/pnas.0707399104. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 4.Doms R. W., Moore J. P. HIV-1 membrane fusion: targets of opportunity. J Cell Biol. 2000;151:F9–14. doi: 10.1083/jcb.151.2.F9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 5.Wyatt R., Sodroski J. The HIV-1 envelope glycoproteins: fusogens, antigens, and immunogens. Science. 1998;280:1884–1888. doi: 10.1126/science.280.5371.1884. [DOI] [PubMed] [Google Scholar]
- 6.Tagliamonte M., Tornesello M. L., Buonaguro F. M., et al. Conformational HIV-1 envelope on particulate structures: a tool for chemokine coreceptor binding studies. J Transl Med. 2011;9:S1. doi: 10.1186/1479-5876-9-S1-S1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 7.Buonaguro L., Buonaguro F. M., Tornesello M. L., et al. High efficient production of Pr55(gag) virus-like particles expressing multiple HIV-1 epitopes, including a gp120 protein derived from an Ugandan HIV-1 isolate of subtype A. Antiviral Res. 2001;49:35–47. doi: 10.1016/S0166-3542(00)00136-4. [DOI] [PubMed] [Google Scholar]
- 8.Gheysen D., Jacobs E., De Foresta F., et al. Assembly and release of HIV-1 precursor Pr55gag virus-like particles from recombinant baculovirus-infected insect cells. Cell. 1989;59:103–112. doi: 10.1016/0092-8674(89)90873-8. [DOI] [PubMed] [Google Scholar]
- 9.Yamshchikov G. V., Ritter G. D., Vey M., et al. Assembly of SIV virus-like particles containing envelope proteins using a baculovirus expression system. Virology. 1995;214:50–58. doi: 10.1006/viro.1995.9955. [DOI] [PubMed] [Google Scholar]
- 10.Wagner R., Deml L., Fliessbach H., et al. Assembly and extracellular release of chimeric HIV-1 Pr55gag retrovirus-like particles. Virology. 1994;200:162–175. doi: 10.1006/viro.1994.1175. [DOI] [PubMed] [Google Scholar]
- 11.Wang B. Z., Liu W., Kang S. M., et al. Incorporation of high levels of chimeric human immunodeficiency virus envelope glycoproteins into virus-like particles. J Virol. 2007;81:10869–10878. doi: 10.1128/JVI.00542-07. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 12.Crooks E. T., Moore P. L., Franti M., et al. A comparative immunogenicity study of HIV-1 virus-like particles bearing various forms of envelope proteins, particles bearing no envelope and soluble monomeric gp120. Virology. 2007;366:245–262. doi: 10.1016/j.virol.2007.04.033. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 13.Yao Q., Bu Z., Vzorov A., et al. Virus-like particle and DNA-based candidate AIDS vaccines. Vaccine. 2003;21:638–643. doi: 10.1016/S0264-410X(02)00572-8. [DOI] [PubMed] [Google Scholar]
- 14.Bachmann M. F., Lutz M. B., Layton G. T., et al. Dendritic cells process exogenous viral proteins and virus-like particles for class I presentation to CD8+ cytotoxic T lymphocytes. Eur J Immunol. 1996;26:2595–2600. doi: 10.1002/eji.1830261109. [DOI] [PubMed] [Google Scholar]
- 15.Deml L., Kratochwil G., Osterrieder N., et al. Increased incorporation of chimeric human immunodeficiency virus type 1 gp120 proteins into Pr55gag virus-like particles by an Epstein-Barr virus gp220/350-derived transmembrane domain. Virology. 1997;235:10–25. doi: 10.1006/viro.1997.8669. [DOI] [PubMed] [Google Scholar]
- 16.Reimann J., Schirmbeck R. Alternative pathways for processing exogenous and endogenous antigens that can generate peptides for MHC class I-restricted presentation. Immunol Rev. 1999;172:131–152. doi: 10.1111/j.1600-065X.1999.tb01362.x. [DOI] [PubMed] [Google Scholar]
- 17.Visciano M L, Diomede L, Tagliamonte M, et al. Generation of HIV-1 virus-like particles expressing different HIV-1 glycoproteins. Vaccine, 2011, in press [DOI] [PubMed]
- 18.Speth C., Bredl S., Hagleitner M., et al. Human immunodeficiency virus type-1 (HIV-1) Pr55gag virus-like particles are potent activators of human monocytes. Virology. 2008;382:46–58. doi: 10.1016/j.virol.2008.08.043. [DOI] [PubMed] [Google Scholar]
- 19.Deml L., Speth C., Dierich M. P., et al. Recombinant HIV-1 Pr55gag virus-like particles: potent stimulators of innate and acquired immune responses. Mol Immunol. 2005;42:259–277. doi: 10.1016/j.molimm.2004.06.028. [DOI] [PubMed] [Google Scholar]
- 20.Doan L. X., Li M., Chen C., et al. Virus-like particles as HIV-1 vaccines. Rev Med Virol. 2005;15:75–88. doi: 10.1002/rmv.449. [DOI] [PubMed] [Google Scholar]
- 21.Lebedev L. R., Karpenko L. I., Poryvaeva V. A., et al. Design of virus-like particles, exposing HIV-1 epitopes. Mol Biol (Mosk) 2000;34:480–485. [PubMed] [Google Scholar]
- 22.Young K. R., Mcburney S. P., Karkhanis L. U., et al. Virus-like particles: designing an effective AIDS vaccine. Methods. 2006;40:98–117. doi: 10.1016/j.ymeth.2006.05.024. [DOI] [PubMed] [Google Scholar]
- 23.Jiang C. Enhancement of cytokine to HIV-1 vaccine DNA prime/MVA boost regime. Changchun: Jilin University; 2005. [Google Scholar]
- 24.Seder R. A., Hill A. V. Vaccines against intracellular infections requiring cellular immunity. Nature. 2000;406:793–798. doi: 10.1038/35021239. [DOI] [PubMed] [Google Scholar]
- 25.Wagner R., Fliessbach H., Wanner G., et al. Studies on processing, particle formation, and immunogenicity of the HIV-1 gag gene product: a possible component of a HIV vaccine. Arch Virol. 1992;127:117–137. doi: 10.1007/BF01309579. [DOI] [PubMed] [Google Scholar]
- 26.Sakuragi S., Goto T., Sano K., et al. HIV type 1 Gag virus-like particle budding from spheroplasts of Saccharomyces cerevisiae. Proc Natl Acad Sci USA. 2002;99:7956–7961. doi: 10.1073/pnas.082281199. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 27.Tsunetsugu-Yokota Y., Morikawa Y., Isogai M., et al. Yeast-derived human immunodeficiency virus type 1 p55(gag) virus-like particles activate dendritic cells (DCs) and induce perforin expression in Gag-specific CD8+ T cells by cross-presentation of DCs. J Virol. 2003;77:10250–10259. doi: 10.1128/JVI.77.19.10250-10259.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]